
Robust Guided Forest Search for Unit Commitment

Vassili Chesterkine
vchester@mit.edu

Paul Theron
paulth@mit.edu

Tom Wright
tomgw@mit.edu

Abstract

Unit Commitment (UC) is a mixed-integer optimization problem (MIP) found in
power systems that consists of determining which generators are generating elec-
tricity at every point in time. It takes on various forms of complexity, considering
each generator’s on/off status, power outputs, and often the transmission of power
across the grid. It is critical to solve these problems effectively, as they involve
satisfying the current electricity demand, while ensuring reliability and efficiency
of the network. Exact methods scale poorly for large instances, which is why the
linearized, or simplified versions are often considered. Alternatively, heuristics can
help expedite the optimization. In this project, we develop a reinforcement learning
(RL)-guided tree search framework, across a forest of pruned search trees in order
to solve the first-stage binary problem (generator on/off status). This generates
robust partial solutions, reducing the MIP to its second stage, which is in this case
is, a linear problem (LP) known as Economic Dispatch (ED).

1 Introduction

Our original motivation stemmed from our backgrounds in optimization. Our program combines
optimization and machine learning, including thorough studies regarding how each discipline can
support one another. The presented approach of solving one stage of this problem with machine
learning (ML), and the other with traditional operations research (OR) techniques is a fascinating
combination of the two areas of research.

Proper operations of power systems is imperative to the well-being of societies and economies around
the globe. Given the $400 billion market in the USA alone, and the often deadly consequences of
power outages, any mismanagement of the grid can result in billions of dollars in economic loss,
and more importantly, the loss of life. While in a perfect world, we could solve every instance to
optimality quickly and without fail, this is not possible. Grid operations at scale are far too complex
to be solved exactly at the required frequency. Therefore, developing reliable heuristic methods for
power systems is a necessary and highly impactful area of research.

Concretely, UC relates to choosing each generator’s on/off status, and consequently power output,
over some time horizon. As input, the current status of the grid and various power demand forecasts
are given. In a setting with N generators, there are up to 2N on/off status configurations of grid.
Framing the commitment decision as an action in {0, 1}N is therefore much more reasonable than
treating it as a classification problem with 2N classes. That said, the action space is still exponential,
and therefore too large for most discrete RL algorithms to be performant when applied directly,
creating a very difficult learning environment.

2 Related Work

UC has been a widespread research topic for decades, with a multitude of different approaches being
proposed to solve it. UC is fundamentally an optimization problem, often considering uncertainties,
and has therefore been solved using traditional MIP strategies, including Benders decomposition to

6.8200 Computational Sensorimotor Learning Midterm Report (Spring 2023).

account for stochasticity by minimizing the expectation across demand samples. Alternative methods
such as genetic algorithms (Kazarlis et al., 1996), particle swarm optimization (Chakraborty et al.,
2012) and simulated annealing (Zhuang and Galiana, 1990) have also been studied.

While the application of RL to power systems tasks is relatively new (Dalal and Mannor, 2015), it has
gained traction in recent years. Multiple attempts to leverage RL were based on Q-learning. Yet, the
scope of these studies remained quite limited, some only testing on a handful of scenarios (Li et al.,
2019) or not taking into account uncertainty (Qin et al., 2021), which raises concerns regarding the
generalizability and robustness in a space where worst-case performance is of extreme importancte
(Mahmud et al., 2011).

Since vanilla RL models struggle with the exponential scaling of the action space in UC, they are not
well fitted to real-world cases, which can include thousands of generators. Another approach that
can enable scalability is based on RL-guided tree search, where one selects the optimal actions by
considering the total cost incurred at depth H . In fact, even though the tree search associated with UC
has an exponential number of nodes with respect to the number of generators, heuristics and RL can
provide intelligent strategies to prune the search tree and lead to relevant solutions without extensive
exploration. de Mars and O’Sullivan (2021) uses top actions considered by a trained Proximal Policy
Optimization (PPO) agent to prune the search tree, removing irrelevant actions from consideration,
and then explores the tree exhaustively using Uniform Cost Search (UCS). Subsequently, de Mars and
O’Sullivan (2022) uses A* and heuristics to speed up the search, while retaining similar performance.

3 Problem statement

This work seeks to leverage the capabilities of RL in order to solve the crux of power systems
problems, namely the integer, or binary, first-stage problem.

3.1 Formulation

We seek to minimize the total cost of generating electricity, summed with the cost of not meeting
demand within a predefined region and a given episode. In this study, each episode consists of a full
day, and a commitment decision is made every 30 minutes. Each episode is therefore 48 consecutive
timesteps. To do so, one must decide which power plants are going to be active at a given timestep,
considering a forecast of demand and other inputs. Given N different power plants in a region, an
action at time step t is a binary vector yt ∈ {0, 1}N , where each yi,t represents the on/off status of
the i-th plant. This action is chosen in consideration of the current observation. Each observation
consists of:

1. Generator up/down times: ui,t ∈ Z
2. Demand forecasts and corresponding errors 1: dt, ϵdt ∈ R
3. Renewable energy generation forecasts: wt, ϵ

w
t ∈ R

4. Current timestep: t ∈ N

In addition to the data that is input to (an observation for) the RL model, we have generator data
which is used to solve the subsequent optimization problem. For each generator i, we have:

1. Minimum and maximum operating limits 2: pmin
i , pmax

i

2. Minimum operating down/up times 3: tmin_down
i , tmin_up

i

3. Quadratic cost curve coefficients: ai, bi, ci
4. Startup cost: csi

These parameters will be used below to define the different costs that are incurred by starting and
operating each power plant. Subsequently, the key decisions to be made are, for each generator i and
timestep t:

1Demand, as well as wind, forecasts and errors are sampled from an Autoregressive Moving Average
(ARMA) model with normally distributed noise

2The power output of each generator is constrained
3Once the process to turn on/off a generator has been initiated, it cannot be interrupted

2

1. Binary on/off status of the generator: yi,t
2. Real-valued power output of the generator pi,t in MW (note: yi,t = 0 =⇒ pi,t = 0)

Given yi,t ∀i ∈ [N], t ∈ [T], the real-valued power outputs pi,t are decided upon by solving ED,
which aims to choose how much plants that are committed should generate, constrained by their
minimum and maximum operating limits. ED is automatically performed using lambda iteration, an
optimization method based on the marginal cost of additional power generation.

In this setting, we aim to find an RL policy π that maps the state space S to the action space
A = {0, 1}n, in order to minimize the total costs associated with power generation, which are
detailed in the section below.

3.2 Objective

We seek to minimize the costs associated with operating an instance of UC problem, considering
unmet demand, over an episode. The formulation below models the costs incurred when generating
power. To this end, we treat our reward function as the negative cost, in order for our agent to learn a
policy that maximizes reward, as is done in most RL settings.

Operating Costs

For each episode, total operating costs Ct are calculated as the sum of fuel costs Cf , startup costs Cs

and lost load costs Cl, summed over all time steps t, all of which are broken down in the sections
below:

C =

T∑
t=1

Ct, where Ct = Cf
t + Cs

t + Cl
t

These costs reflect the actual economic costs that are at play in power generation. Additionally,
similar costs were implemented in the Python package we used, which enabled direct comparison of
results.

Fuel costs

Fuel costs are non-linear costs individually generated by each generator of the grid, and are calculated
according to the quadratic cost curves defined here:

Cf
t =

N∑
i=1

Cf
i,t, with Cf

i,t =
1

2
yi,t(aip

2
i,t + bipi,t + ci)

where yi,t ∈ {0, 1} is the generator commitment – on/off, and pi,t ∈ R+ is the real-valued power
output in MW.

Startup Costs

Startup costs are incurred whenever a generator is committed. With csi the startup cost of each

generator, λi,t =

{
1 if yi,t − yi,t−1 = 1

0 otherwise
, startup costs for generator t are:

Cs
t =

n∑
i=1

λi,tc
s
i

Lost load costs

When committed generators are unable to meet demand, a lost load cost is incurred:

Cl
t = V

∣∣∣∣∣d̄nett −
n∑

i=1

pi,t

∣∣∣∣∣ (1)

where V ($/MWh) is the value of lost load. Note that in this setup there is an equal penalty for
over-commitment and under-commitment of generation; in practice, the costs of over-commitment

3

are likely to be substantially lower, and could be managed by wind shedding or other means apart
from load shedding. As a result, the optimal commitments and reserve allocation strategies in this
setup are likely to give greater priority to generator footroom (under-commitment) than would be
common in real power systems.

The formulation above naturally induces a MIP, which can be solved using a variety of strategies
including branch and bound, decomposition methods or cutting planes. Here, instead of using
traditional OR methods, we leverage RL methods to intelligently assign on/off statuses based on
observations of the environment. We consider the optimality gap RL methods are able to achieve
relative to the true optimal solutions. We further compare solution quality with preexisting methods
from literature, both in terms of optimality gap and run time.

4 Method

We will be using rl4uc, the Python environment proposed by de Mars and O’Sullivan (2021) which
implements the modeling introduced above, and allows for the testing of different RL strategies. The
proposed environment is similar to OpenAI Gym API environments, since given an instance of the
environment env and an action action, we can call env.step(action) to execute the action in
the current state and return a new state, reward and indicator regarding whether the state is terminal
(end of the simulation) or not.

Our first contribution will be to implement a multitude of different agents to evaluate their performance
as well as measure their corresponding run times. We implemented several baseline models that
provide an idea of what performance we can later expect from RL models. These baselines include
an agent which always chooses randomly what actions to use, as well as a classical ϵ-greedy multi-
armed bandit (MAB). Later on, we programmed Soft Actor-Critic (SAC), Asynchronous Advantage
Actor-Critic (A3C), and Proximal Policy Approximation (PPO) agents. Given a state, these agents all
output a distribution over the action space, which will be useful for subsequent parts of our strategy.

Due to the exponential growth of the action space with the number of generators, the direct application
of RL strategies to UC problems is not suitable. One method that has been developed in order to
tackle this problem, is the application of local tree search methods on trained policies. de Mars
and O’Sullivan (2021) proposed formulating the Markov decision process (MDP) in the following
representation.

Nodes represent observations, with edges being feasible actions. Rooted at state s0, for each node
(state), only the M most likely actions, according to the trained policy π, are considered as possible
actions. A probability threshold ρ is used to select the most likely actions. This effectively upper
bounds the branching factor of the search tree by ⌊ 1ρ⌋, as compared to the initial 2N . This ensures
that the complexity of the search tree is not affected by N , and therefore allows the method to scale.

The cost of traversing an edge is the expected operating cost, estimated by a Monte Carlo method,
simulating each transition |S| times and calculating the mean, where S is a set of uncertainty scenarios.
Their proposed guided tree search algorithm selects actions iteratively, greedily selecting the action
at time t that results in the minimum possible costs at time t+H , where H is our horizon.

𝑠!"

𝑠!#$" 𝑠!#$%𝑠!#$$

𝑠!#%" 𝑠!#%$ 𝑠!#%% 𝑠!#%& 𝑠!#%' 𝑠!#%(

∈ argmax 𝑃) 𝑎! 𝑠!)
∉ argmax 𝑃) 𝑎! 𝑠!)

𝑐" 𝑐$ 𝑐% 𝑐& 𝑐'
(= argmin 𝑐!)

𝑐(

𝑎!

Figure 1: Guided tree search – sub-optimal actions, according to π, are pruned and the remaining
scenarios are exhaustively explored up to horizon H (here H = 2) to find cost-saving actions

4

It is notable that this vastly limits the number of actions, and therefore states, explored. We only
consider probable actions from the policy initialized on the unperturbed initial state s0, and then try
to minimize an expected cost under uncertainty. This assumes that the policy is stable to varying
initial conditions.

That said, through experimentation, we observed that a policy can be, in fact, quite sensitive to initial
conditions and state. Across uncertainty scenarios in S – obtained by sampling forecasts and errors
with the ARMA model mentioned above, we found that by building trees rooted at each perturbed
initial state, we explore at least 7% more of the action space. More precisely, our experiments
demonstrated that a perturbation of 5% on the demand and wind scenarios, resulted in 10% more
exploration of the action space, for the 5 generators scenario. The number of new actions we explore
following a disturbance increases with the number of generators. Moreover, research has shown a gap
in performance between unguided tree search – without pruning – and guided tree search, leveraging
the decisions of an RL agent. This gap suggests that with a more robust agent, or a better pruning
method, there is room for improvement.

Therefore, we propose a new search algorithm, which firstly builds |S| trees, each initialized on an
uncertainty scenario s0 + δs, selects the best action within each tree, and finally decides on a final
action path via one of two path-finding mechanisms, call it f :

• (1-α)% best worst performance (max-min): Remove the α
2 outliers at each tail, and consider

the set of actions that minimize worst case costs across scenarios.
• (1-α)% best average performance (max-avg): Remove the α

2 outliers at each tail, and
consider the set of actions that minimize average costs across scenarios.

The intuition is that these methods should improve the robustness of the algorithm, which is an
important factor to consider when dealing with power systems. That is to say, when supply or demand
forecasts are poor, or high in variance, we expect improved performance. We describe the method in
detail in the following section.

4.1 Robust Guided Forest Search algorithm

A forest F , is constructed given a trained a policy π using a given RL algorithm of choice (PPO, A3C,
etc...). Each tree τs corresponds to a perturbation of the initial state for δs ∈ S and therefore has
s0+δ as its root node. From this perturbed state, actions suggested by π(s0+δs) and with probability
greater than a selected threshold ρ are selected as branches from the root node. Subsequently, the
tree is similarly expanded to depth H , which we chose to be 4 in our experiments. For each leaf of
the tree, a cost is given, summing up all the costs incurred by the actions that led to this terminal
state. At this point, the tree search – here performed with Uniform Cost Search (UCS) – retrieves the
path that led to the minimal cost and the first action along that path is retrieved. The process is then
repeated for each time step t of the episode {1, ..., T}. Finally, we decide the chosen action with one
of the path-finding strategies described in the section above. The algorithm below summarizes this
methodology.

The procedure described above selects the best action given a state, based on all |S| uncertainty
scenarios explored.

5 Results

As discussed above, while it remains quite easy for RL methods to attain reasonable performance on
a limited number of generators, it takes considerable time and computational power to train strong
agents for larger instances. For this project, we restricted ourselves to environments with 5 and 10
generators. Assuming that we are able to train (offline) an RL agent that eliminates irrelevant actions
and identifies cost-saving actions broadly, our proposed method scales independently of the number
of generators, since the branching factor of the search tree upper bounded by a constant.

After training several RL agents, the next step we conducted was to use these agents as guides for a
tree search of the best commitment. The results we obtained are presented in table 1 below. 4

4For the sake of clarity, we excluded the MAB agent from the results table, since it had performance
comparable to that of the random agent.

5

Algorithm 1 Robust Guided Forest Search
Require: π a trained policy and s0 an initial state
Wa ← +∞, a ∈ A
for δ ∈ ∆ do

sδ ← s0 + δ
c(sδ)← 0
Initialize tree τδ with root node sδ
for h ∈ 0, ...,H − 1 do

for each node s of τδ at depth h do
a1s, . . . a

k
s ← top k actions with regard to π(s)

s′1, . . . s
′
k ← successors of s given actions a1s, . . . a

k
s respectively

r1, . . . , rk ← corresponding rewards
Expand τδ with nodes s′1, . . . s

′
k

c(s′j)← c(s) + rj , j ∈ 1, . . . , k
end for

end for
Get first action, total cost a0, c∗δ ← argminsf∈SH

c(sf) where SH set of nodes with depth H
Wa0 ← min {Wa0 , c

∗
δ}

end for
return argmaxa Wa

Num. Modality Agent Reward Reward Optimality Runtime
generators (mean, $) (std, $) gap (mean, %) (mean, s)

Unguided – −234,537 39,348 7.21 78.6

Guided

Random −300,295 253,732 37.3 53.2
5 SAC −285,376 39,829 21.1 12.9

A3C −263,429 39,077 20.9 5.34
PPO −230,650 38,618 5.51 36.8

Unguided – – – – –

Guided

Random 3,799,066 2,086,457 762 72.2
10 SAC 550,767 90,934 20.9 9.0

A3C 530,964 79,556 21.0 5.68
PPO 514,979 105,403 16.9 12.5

Table 1: Guided tree search performance of various agents – guided search leads to reasonable
performance and runtime

We observe that tree search methods yield rewards only marginally worse than the optimal rewards, as
the optimality gap column suggests. Overall, A3C and PPO seem to enable greater rewards. However,
because our environment is not sample efficient, the training of SAC was shorter than that of A3C and
PPO. In a real-world case, RL agents would only have to be trained once, and therefore performance
should me the main selection criterion of the agent. As expected, tree search guided by a random
agent is significantly worse, leading to both poor and unreliable performance as well as lengthy
exploration.

Interestingly, the standard deviation of rewards indicates that guided tree search leads to reasonably
stable performance, similar to unguided search. However, guided approaches offer better performance
as well as shorter runtimes than unguided ones. Remarkably, unguided tree search did not converge
in a reasonable time for 10 generators, which supports the need for guided exploration of the search
tree. Although this should be verified by testing with larger instances, these findings support our
claim that while unguided tree search is intractable when the number of generators increases (and is
in fact impossible for real-life cases with thousands of generators), guided tree search does scale.

We then carry out extensive experiments on our proposed Robust Guided Forest Search method.
We test both the A3C and PPO agents, varying the size of the forest, as well as the path-finding
strategy that retrieves the final action and the type of uncertainty applied on the initial states – ±10%

6

uncertainty on the nominal forecast values (Auto) or sampling from the normal distribution of noise
of the ARMA model (Box).

Num. Agent Num. Strategy Observation Reward Reward Runtime Opt.
gen. trees uncertainty (mean, $) (std, $) (mean, s) Gap (%)

5

A3C

10
max-avg Box −265,007 38,756 8 22

Auto −263,665 38,862 8 21
max-min Box −265,007 38,756 8 22

Auto −263,665 38,862 8 21

50
max-avg Auto −263,420 39,341 27 21
max-min Box −265,046 38,549 26 22

Auto −263,420 39,341 27 21

100
max-avg Auto −264,097 38,730 47 21
max-min Box −265,055 38,520 46 22

Auto −264,097 38,730 49 21

PPO

10
max-avg Auto −234,203 40,778 32 7
max-min Box −251,143 71,291 34 14

Auto −234,203 40,778 33 7

50
max-avg Auto −230,055 39,131 155 5
max-min Box −246,136 59,009 182 12

Auto −230,231 39,308 149 5

100
max-min Box −348,162 61,498 327 50

Auto −236,945 54,230 332 8

10 A3C

10
max-min Box −533,973 78,936 12 22

Auto −531,440 79,131 12 21

50
max-min Box −534,017 78,540 43 22

Auto −530,930 80,121 43 21

100
max-min Box −534,026 78,493 82 22

Auto −532,210 78,948 81 21
Table 2: Robust Guided Forest Search with various agents and settings

The main takeaway from these experiments is that the forest search enables more robustness, particu-
larly with larger instances, even though that remains to be proven with settings of more generators.
With 10 generators, our best model is able to reach a similar average reward as the tree search, with a
considerably smaller standard deviation. This suggests that our proposed method is more resilient
to erroneous forecasts and other sources of uncertainty. This is further supported by the worst case
performance analysis below. Table 3 lists the minimal rewards incurred for any testing episode, using
the RL agent’s action prediction directly, on the tree search or on the forest search. We notice that
guided forest search enables a slightly better worst case scenario.

Num. generators Agent Raw agent Tree search Forest search

5 PPO −725,810 −308,640 −299,774
A3C - −334,631 −326,891

10 PPO −4,889,781 −779,327 -
A3C - −677,227 −649,537

Table 3: Worse case performance analysis – forest search is more robust

6 Discussion

6.1 Challenges

There are several bottlenecks that certainly constrain the performance of our solutions. First, as
discussed previously, the main challenge posed by the UC problem arises when the number of
generators increases, and the size of the action space exponentially with it. While our results and

7

intuition suggest that Robust Guided Forest Search can be a robust method that finds cost-saving
solutions to the UC problem in reasonable time, further experiments should be performed to validate
this. Due to the computational complexity of the problem and our the limited time frame of the
project, we were not able to conduct these.

Then, while the implementation of the Python environment must have involved a considerable effort,
there remain many possible improvements that would facilitate further development of RL solutions
to the UC problem. For instance, the environment does not directly inherit from the traditional
OpenAI gym.Env class, which causes compatibility issues with other RL libraries. Furthermore, the
package operates with a NumPy backend, which slows down the training of all RL models, which
relies on PyTorch. While it would be possible to adapt the package to use a PyTorch backend, this
would require substantial work and tests, which were not possible to include within the scope of this
project. Ulterior progress could therefore be made by upgrading the rl4uc package to work with
PyTorch.

Finally, more complex preprocessing could be performed more efficiently on the states. The package
proposes by default a simplistic preprocessing which only concatenates the current status of gener-
ators and timestep, as well as an other preprocessing that also concatenates the demand, and wind
forecasts. More advanced versions would ideally include for example transformations that consider
the constraints of the problem, as well as a more realistic reward design, which asymmetrically
penalizes under- and over-commitment.

6.2 Future work

Still, the results obtained in this project are encouraging and support that RL-based methods can
tackle critical real-world problems such as UC. In addition to the further development of software
environments to enable and encourage further research in this impactful setting, there are plenty
of algorithmic and modeling directions that merit further research and development. Tree search
strategies have shown that they can greatly improve the capabilities of RL algorithms in this space.
Capabilities of tree search and forest search should be thoroughly tested on larger instances to
verify scalability and performance. With these experiments, consideration of different path finding
mechanisms should be studied for forest search methods.

7 Conclusion

In conclusion, the Unit Commitment (UC) problem is a critical aspect of power systems optimization
that involves determining the generators that will produce electricity at any given time. The problem
is complex and involves an exponentially large action space, which has made it difficult to solve at
scale using traditional optimization techniques. Ensuring reliability and efficiency of the network by
improving worst case performance is critical in meeting demand and mitigating disasters. To this end,
a reinforcement learning (RL)-guided tree (forest) search framework is proposed, which generates
robust partial solutions and reduces the problem to a linear problem (LP) known as Economic
Dispatch (ED). In particular, our method is able to scale, as the complexity of the search does not
directly depend on the size of the instance. While it does require an RL agent trained offline, this
agent does not need to obtain high performance but simply should be able to exclude poor actions
and identify interesting ones. This is quite important, since RL agents have not been able to directly
yield good performance. Finally, because our model takes into account the stochasticity of forecasts,
it is more robust against the inherent variability of the UC problem. Given the importance of power
systems to the economy and society, developing reliable heuristic methods for power systems is a
necessary and highly impactful area of research. This work supports our hypothesis that RL can be at
the forefront of these developments now, and in the future.

8

References
Chakraborty, S., Ito, T., Senjyu, T., and Saber, A. Y. (2012). Unit commitment strategy of thermal

generators by using advanced fuzzy controlled binary particle swarm optimization algorithm.
International Journal of Electrical Power & Energy Systems, 43(1):1072–1080.

Dalal, G. and Mannor, S. (2015). Reinforcement learning for the unit commitment problem. In 2015
IEEE eindhoven powertech, pages 1–6. IEEE.

de Mars, P. and O’Sullivan, A. (2021). Applying reinforcement learning and tree search to the unit
commitment problem. Applied Energy, 302:117519.

de Mars, P. and O’Sullivan, A. (2022). Reinforcement learning and a* search for the unit commitment
problem. Energy and AI, 9:100179.

Kazarlis, S. A., Bakirtzis, A., and Petridis, V. (1996). A genetic algorithm solution to the unit
commitment problem. IEEE transactions on power systems, 11(1):83–92.

Li, F., Qin, J., and Zheng, W. X. (2019). Distributed q-learning-based online optimization algorithm
for unit commitment and dispatch in smart grid. IEEE transactions on cybernetics, 50(9):4146–
4156.

Mahmud, M. A., Hossain, M., and Pota, H. (2011). Worst case scenario for large distribution networks
with distributed generation. pages 1 – 7.

Qin, J., Yu, N., and Gao, Y. (2021). Solving unit commitment problems with multi-step deep
reinforcement learning. In 2021 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm), pages 140–145. IEEE.

Zhuang, F. and Galiana, F. (1990). Unit commitment by simulated annealing. IEEE Transactions on
Power Systems, 5(1):311–318.

Individual contributions

While all members of the group participated on all, at least at the ideation level, each of us focused
more particularly on a specific part of the project. Tom worked on the formulation of the optimization
problem that UC poses and on methods to solve it. He also provided baselines which we compared our
models to. Vassili focused on implementing various RL agents that were used to conduct search tree
pruning in our methodology. Because the rl4uc package is not fully compatible with open-source
libraries, these agents had to be coded manually. Finally, Paul wrote the code to perform forest search,
which required programming trees for the purpose of our tree search. He also wrote and ran most of
the scripts that led to the results we presented above. All members contributed to writing this report
and preparing the final presentation.

9

	Introduction
	Related Work
	Problem statement
	Formulation
	Objective

	Method
	Robust Guided Forest Search algorithm

	Results
	Discussion
	Challenges
	Future work

	Conclusion

