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1 Introduction

Few topics dominate day to day life on the same scale as weather. From natural disaster management to deciding
whether or not to carry an umbrella, everyone is influenced and affected by the weather each and every day.
Weather also has great influence on energy markets, as weather forecasts have a direct impact on the supply and
demand of energy. On the supply side, renewables are fully dependent on weather conditions. Additionally, a
cold wave, for example, can increase the demand used for heating purposes. One can think of a plethora of such
examples that can drive namely every contract used in energy markets. Yet, regardless of the great amount of
resources being used for the task, producing high quality granular weather forecasts remains extremely difficult.
This introduces large amounts of uncertainty in the forecasts produced, which becomes in and of itself an
important and challenging prediction task.

Uncertainty in weather forecasts comes from various sources. Firstly, it is ubiquitously known that weather
systems are chaotic in nature. Additionally, no model can capture the full complexity of the physical world.
Finally, whether we are dealing with physical or data-driven models, there may be errors in the data we have
collected. All this considered, it is not enough to provide point estimations of weather forecasts, but rather
a reliable estimation of the probability distribution of weather parameters. To characterize this probability
distribution and to quantify the uncertainty that comes with trying to estimate it, weather forecast institutes
run an ensemble of weather prediction models in parallel, subsequently generating an uncertainty space that can
be measured.

With an increase in the forecast horizon, the uncertainty measured by the ensemble models increases exponentially
Figure 1. Improving our capacity to understand and predict the uncertainty of numerical forecasts can have wide
reaching impact. In the case of extreme weather events, for instance, estimating the severity of the event, i.e.
the range of the values the weather parameter may take, is important for policy makers to understand the best
course of action for evacuation or protective protocols. On the other spectrum of use cases stands the one that
guides the methodology of this paper; the uncertainty and variability of weather forecasts drive the volatility of
energy contracts, impacting trading strategies and positions. In this paper, in collaboration with Balyasny Asset
Management (BAM)’s energy trading desk, we undertake the task of forecasting the uncertainty generated by
physical ensemble models, using statistical and machine learning models.

2 Data

The available dataset comprises of two classes of physical weather models, the Global Ensemble Forecast System
(GEFS) and European Centre for Medium Range Weather Forecasts (EC15). We make use of the data for two
weather indicators: wind and temperature. Wind data is present for 4 European countries, namely France,
Netherlands, Great Britain and Germany for EC15 and for the last two countries for GEFS. Temperature data is
present for the same 4 countries for GEFS, whereas for EC15, only the France and Germany data for temperature
are considered.
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Figure 1: Depicting EC15 Temperature forecasts for Germany on 2018-07-02. Every dashed line represents the
forecasts of an ensemble. The solid line represents the forecasts of Model0. Clearly, as the forecast window
decreases, i.e. we approach the date of interest, the models converge towards similar forecasted values. The
dashed blue lines are a graphical representation of the uncertainty space generated by the physical models.

EC15 models produce their forecasts twice a day, at midnight and noon respectively. Each time the model runs,
it predicts on a time window of 6h for the next 60 time windows. GEFS models provide more granular forecasts.
They run 4 times a day, predicting again on a time window of 6h for the next 60 time windows. EC15 data is
available from the 29th of March 2011 until the 28th of February 2022. Similarly, EGFS data is available from
the 22nd of February 2011 until the 28th of February 2022.

Both physical model classes contain a Model0 representing the best forecast and containing the physical model
formulation. This model formulation is kept constant, but the initial conditions of Model0 are slightly perturbed
to generate each Ensemblei prediction. Each physical model class, per country, per weather indicator contains
a number of Ensemble predictions that behave similarly to Model0, i.e at each forecasting point they output a
predicted value for the next 6h, for the next 60 time windows. As previously mentioned, a slight perturbation in
the initial conditions can result in very different forecast values for the weather indicators, due to their dynamic
nature. This set of forecasts for every time window characterizes the uncertainty space generated by the physical
models.

3 Methods

3.1 Overall approach

We approach the problem of uncertainty quantification and prediction from the perspective of predicting standard
deviation among the ensemble members. We take this standard deviation as a proxy for the level of disagree-
ment among the models, and hence an indication of how uncertain these models are about the target outcome.
Through conversations with BAM, they communicated that they tend to trade daily, hence this forecast horizon
was of primary concern. The standard deviation of ensemble models making forecasts on a 24-hour horizon is
therefore the main quantity of interest throughout our project.
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Mathematically, denote the forecasts of ensemble models making k-step predictions as ŷt+k,i, where i is the

ensemble member. Now denote σk,t =
∑N

i=1(ŷt+k,i−ȳt+k)

N as the standard deviation among these predictions. Here
ȳt+k is the mean forecast of the ensemble members and N is the total number of forecasts made. The goal of our
study is to predict σ24,t at a forecast-horizon of 24 hours. Hence we fit various forecasting models of the form:

σ̂24,t+24 = f(Xt)

where Xt, as we discuss, is comprised of information relating to the standard deviation of longer-horizon models,
as well as the forecasts made across multiple geographies. For f , the forecasting model, we trialed simple ARIMA
and ARIMAX models, as well as Sparse Regression, Vector Autoregression and LightGBM.

3.2 Leveraging multi-horizon forecasts

Our modelling approach revolves around using the standard deviation of longer-horizon models to predict the
standard deviation of short-horizon models (namely 24 hour models). That is, when we seek to predict σ24,t+24,
which in principle comprises of models making predictions for t+ 48, we leverage the known standard deviation
of models making predictions on a 48-hour forecast horizon (σ48,t). Note that there is no look-ahead bias here,
since σ48,t and σ72,t are known at time t.

A natural objection to this modelling approach is: ”why not just use σ48,t as the prediction σ̂24,t+24, since both
values relate to the same terminal date?”. Notice however that σ48,t is the standard deviation of models making
forecasts on a 48 hour horizon. This quantity is naturally higher than a prediction for the standard deviation of
models making 24 hour predictions. A visual intuition for this phenomenon is displayed in Figure 2. σ48 and σ72

are generally on a higher scale than σ24, and hence cannot be compared directly. However, it is also clear that
the quantities are highly correlated.

It clearly appears to be a promising direction to infer σ24,t+24 using the value of σ48,t or σ72,t. In Figure 3,
we postulate a mechanism by which this relationship is predictive. Here σ48,t is the standard deviation 48
hours ahead. Notice that this standard deviation ’includes’ that of the shorter horizon, hence capturing possible
developments in uncertainty that occur between t + 24 and t + 48. Since the physical models have more of a
window into the future than autoregressive trends, including this standard deviation should capture more than
an autoregressive relationship with σ24 might.

Figure 2: σ24, σ48 and σ72 are fundamentally different quantities. Predicting one directly using the other does
not make sense. However, they are highly related and hence the value of one can be used to inform the forecast
for another.
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Figure 3: Leveraging standard deviation of forecasts made on longer horizons to inform shorter-term predictions.
Here σ48,t, which is the standard deviation of models making forecasts on a 48-hour forecast horizon, is known at
time t. This standard deviation can be used to inform what the standard deviation of 1-day forecasting models
will be in 24 hours.

3.3 Autogressive Integrated Moving Average Models (ARIMA/ARIMAX)

The Auto-Regressive Integrated Moving Average (ARIMA) is a linear model for forecasting univariate time series
in which the predictors consist of previous values of the dependent variable and/or of the forecast errors, called
lags. The lags of the stationary series are called ”autoregressive” terms, controlled by the p parameter, whereas
the lags of the forecast errors are called ”moving average” terms controlled by the q parameter. ARIMA(p,d,q)
is a general class of models for time series forecasting that allows differencing the series at order d to make it
stationary. The transformed series is an ”integrated” version of the stationary series. The general ARIMA(p,d,q)
model of the differenced time series yt and error terms ϵt is fitted as follows:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + θ1ϵt−1 + θ2ϵt−2 + ...+ θqϵt−q

To apply ARIMA for our use case, we extend it to the ARIMAX model, adding a linear interaction of external
variables. We also use an autoregressive order of 2 and ignore the moving average terms, yielding to the following
equation:

σ24,t = c+ β1σ48,t + β2σ72,t + ϕ1σ24,t−k + ϕ2σ24,t−2k

This produces an iterative forecast for the quantity that we want to estimate:

σ̂24,t+24 = c+ β1σ48,t+24 + β2σ72,t+24 + ϕ1σ̂24,t+24−k + ϕ2σ̂24,t+24−2k

where k = 6 for GEFS and k = 12 for EC15.

3.4 Vector Autoregression

A Vector Autoregression (VAR) is a time series forecasting model that allows you to model several variables that
evolve through time. In VAR, we estimate linear coefficients both on the variables themselves (autoregressive
relationships) and also between variables in the system. A generic form VAR(2) with two variables would be
estimated as follows:

[
y1,t
y2,t

]
=

[
c1
c2

]
+

[
ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

] [
y1,t−1

y2,t−1

]
+

[
γ1,1 γ1,2
γ2,1 γ2,2

] [
y1,t−2

y2,t−2

]
+

[
e1,t
e2,t

]
(1)
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The useful aspect of VAR, above using separate ARIMAX models, is its ability to perform iterative forecasting.
Once one-step forecasts are made, these forecasts are ’fed-forward’ to predict t+ 2 and so on, as follows:

[
ŷ1,t+1

ŷ2,t+1

]
=

[
c1
c2

]
+

[
ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

] [
y1,t
y2,t

]
+

[
γ1,1 γ1,2
γ2,1 γ2,2

] [
y1,t−1

y2,t−1

]
(2)

=⇒
[

ŷ1,t+2

ŷ2,t+2

]
=

[
c1
c2

]
+

[
ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

] [
ŷ1,t+1

ŷ2,t+1

]
+

[
γ1,1 γ1,2
γ2,1 γ2,2

] [
y1,t
y2,t

]
(3)

Since our data is available on a 6-hour and 12-hour frequency (for GEFS and EC-15 respectively), this allowed
us to make predictions for 24-hours ahead, since we always predict 6 or 12 hours ahead and use these predictions
to feed forward towards a 24 hour prediction. Thus our VAR model for GEFS standard deviation was specified
as follows:

 σ24,t

σ48,t

σ72,t

 =

 c1
c2
c3

+

 ϕ1,1 ϕ1,2 ϕ1,3

ϕ2,1 ϕ2,2 ϕ2,3

ϕ3,1 ϕ3,2 ϕ3,3

 σ24,t−6

σ48,t−6

σ72,t−6

+, ...,+

 γ1,1 γ1,2 γ1,3
γ2,1 γ2,2 γ2,3
γ3,1 γ3,2 γ3,3

 σ24,t−24

σ48,t−24

σ72,t−24

 (4)

We then use this higher frequency information to make an iterative forecast for t+ 24: σ̂24,t+24

σ̂48,t+24

σ̂72,t+24

 =

 c1
c2
c3

+

 ϕ1,1 ϕ1,2 ϕ1,3

ϕ2,1 ϕ2,2 ϕ2,3

ϕ3,1 ϕ3,2 ϕ3,3

 σ̂24,t+18

σ̂48,t+18

σ̂72,t+18

+, ...,+

 γ1,1 γ1,2 γ1,3
γ2,1 γ2,2 γ2,3
γ3,1 γ3,2 γ3,3

 σ24,t

σ48,t

σ72,t

 (5)

3.5 Sparse Regression

In data settings with a large number of predictors relative to the number of observations, dimensionality reduction
is often required ahead of the modelling step. While there are many different approaches to dimensionality
reduction, sparse regression is one that maintains the highest level of interpretability while remaining performant.

Sparse regression relies on selecting the best subset of features available, namely, selecting k << p features. For
this study, the cross correlation between the features and the target was used to pick the k most important
covariates. The problem then becomes a simple linear regression task on the smaller dataset:

ŷ = β0 + β1X1 + ... + βkXk s.t. Xi is column i of X

Applied to our setting, an example of what we could see with k = 3 is:

σ̂DEU
24,t+24 = β0 + β1σ

DEU
48,t + β2σ

FRA
48,t + β3(σ

DEU
72,t − σNLD

72,t )

3.6 LightGBM

Boosted trees have gained lots of popularity due their impressive general performance, at the cost of a high level
of interpretability. For this project, we leverage LightGBM, one of the most popular methods in the space of
Boosted trees today.

Gradient boosted decision trees in general work by training a weak initial model and checking the performance on
the dataset. The prediction error gives weights to the training set, emphasizing examples which were predicted
incorrectly. Then, a new model is trained with a goal of fixing these errors, forming an ensemble. Subsequent
trained models form an ensemble which makes predictions by aggregating those of all members. LightGBM is
based on this algorithm, and differs from similar solutions by focusing on leaf-wise growth.
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Indicator Country Model ARIMAX VAR Sparse Regression (k=5) LightGBM

Wind FRA EC15 0.06 0.63 0.66 0.66
Wind NLD EC15 0.02 0.60 0.61 0.59
Wind GBR EC15 -0.06 0.47 0.46 0.50
Wind GBR GEFS 0.17 0.64 0.64 0.43
Wind DEU EC15 -0.02 0.60 0.59 0.61
Wind DEU GEFS 0.15 0.66 0.64 0.41
Temp. FRA EC15 -0.02 0.47 0.45 0.47
Temp. FRA GEFS 0.16 0.43 0.42 0.14
Temp. NLD GEFS 0.16 0.47 0.45 0.18
Temp. GBR GEFS 0.18 0.63 0.53 0.20
Temp. DEU EC15 -0.06 0.55 0.51 0.53
Temp. DEU GEFS 0.18 0.47 0.41 0.20

Table 1: Validation set R2 performance for σ24,t+24 being used for model selection

4 Experiments & Results

We split the dataset in a 50-30-20 ratio for the training, validation and test set respectively, preserving the time
dimension of the series. This results in a validation set of 2393 data points for EC15, 4827 data points for GEFS
and in a test set of 1597 data points for EC15 and 3220 for GEFS. For the time series models, the augmented
Dickey–Fuller test was conducted for each quantity of interest. All tests were positive for stationarity. This
was expected, considering that our quantities of interest are standard deviations. Considering this fact, we did
not perform differencing in the time series. We use the validation set to evaluate the predictive ability of the
models and for model selection. Then, we use the test set to evaluate the impact of our model in improving the
uncertainty space quantification.

4.1 Model performance

In Table 1, we summarize the performance of the models on the validation set for σ24,t as measured by R2. First
notice that the classical approach of time series forecast, namely ARIMA, and in our case the enhanced version
of the model with external predictors as explained in Section 3.3 performs really poorly. We conducted many
experiments to see weather introducing moving average terms and longer autoregressive lags would improve the
model, but to no avail. This was an indicator that a simple model could not capture the complexity of the
weather uncertainty.

Multivariate and more complex models perform much better than our initial attempt, with VAR seemingly
performing better on the validation set overall. VAR and Sparse regression perform similarly for both GEFS and
EC15, while VAR has a slight edge over the Sparse Regression in most cases. A surprising result is that VAR has
a significant edge over LightGBM on the GEFS models. R2 scores for LightGBM show us that the tree-based
model has an especially hard time modelling GEFS model behavior. For the EC15 model, it manages to produce
results comparable to VAR and Sparse Regression.

We decided to choose our model based solely on the performance on the validation set, however being aware of
the importance of model interpretability, we devote the whole next section to it. Observing that the VAR model
performs best on the validation set, we choose it as the model to evaluate the impact of our forecasts. For the
fitted model, we compute the performance of VAR model for predicting both σ24,t+24 and Model024,t+24

on the
test set with results as in Table 2. Comparing the two, we can see that scores on the test set are lower than on
the validation set.
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Indicator Country Model σ24,t+24 Model024,t
Wind FRA EC15 0.68 0.97
Wind NLD EC15 0.61 0.94
Wind GBR EC15 0.57 0.994
Wind GBR GEFS 0.72 0.94
Wind DEU EC15 0.69 0.96
Wind DEU GEFS 0.69 0.94
Temp. FRA EC15 0.68 0.996
Temp. FRA GEFS 0.68 0.995
Temp. NLD GEFS 0.62 0.99
Temp. GBR GEFS 0.63 0.993
Temp. DEU EC15 0.57 0.996
Temp. DEU GEFS 0.70 0.995

Table 2: Test set VAR R2 performance for σ24,t+24 and Model024,t+24

Figure 4: Ahead of predictive modelling, our knowledge of physical model uncertainty, and therefore weather
uncertainty was limited to forecasts at time t: σ48,t, our uncertainty from 48 hours out. Our prediction σ̂24,t+24

uses only knowledge available at time t and represents an understanding of the uncertainty from t+24, narrowing
the uncertainty by over 30 %.
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4.2 Model Interpretability

4.2.1 VAR

A VAR models interactions between several variables that are each treated as endogenous. Its ϕ coefficients
can be interpreted in the same way as a regular linear regression with a single target. In particular, for two
variables y and x, ϕy,x can be interpreted as ”A unit increase in x leads to a ϕy,x increase in y”. As an
example, Figure 5 shows VAR coefficients for a model on wind in Great Britain from EC15. Notice that the
constant coefficients on σ24,t, σ48,t and σ72,t are naturally increasing, reflecting the natural increase in standard
deviation as the forecast horizon increases. The interaction terms are also relevant. Notice that the autoregressive
interactions are generally strong, but strongest of all are interactions that occur between long and short-horizon
standard deviations relating to the same target. This strongly supports our earlier hypothesis, that longer horizon
information can be leveraged early to uncover information about developments in uncertainty over the next 24
hours.

Figure 5: Coefficients of interaction for an EC15 GBR-Wind VAR model. Notice that the strongest interactions
occur between long and short-horizon standard deviations relating to the same target. For instance, σ24,t and
σ48,t−24 interact strongly, while σ48,t−24 is available earlier than σ24,t and hence can be used as a strong early
indicator. This reaffirms the predictive relationship we hypothesized in subsection 3.2.

4.2.2 Sparse Regression

An important advantage to sparse regression over other dimensionality reduction techniques is its interpretability.
Given a large number of features, we can identify which are most important for predicting our target. In the
context of this project, we take advantage of this fact in order to derive insights in to correlations and trends
across geographies and first order differences.

For example, when predicting σGBR,Wind
24,t+24 , the resulting model is:

σ̂GBR,Wind
24,t+24 = 0.094 + 0.415σGBR,Wind

48,t + 0.051(σGBR,Wind
48,t − σFRA,Wind

48,t )

+ 0.010(σDEU,Wind
48,t − σGBR,Wind

48,t )− 0.036(σGBR,Temp
48,t − σFRA,Temp

48,t ) + 0.003(σDEU,Temp
48,t − σGBR,Temp

48,t )

Intuitively, the greatest influence is the 48-hour forecast uncertainty at time t, as the terminal time of this matches

8



that of the terminal day of our target, namely, t+ 48. This is followed by geographically differenced wind, GBR
minus FRA and DEU minus GBR. Finally, we see two geographically differenced temperature features; GBR
minus FRA and DEU minus GBR. These results indicate a link between wind uncertainty and temperature
uncertainty, as well as geographic trends.

4.2.3 LightGBM

Since LightGBM models consist of numerous decision trees, we are not provided with any inherent or robust
interpretation of how they make decisions. For that reason, Shapley values, originally developed for game theory,
provide us a mechanism to infer which features contribute the most to making predictions.

Figure 6 shows that the most important feature (in Shapley interpretation of importance) for predicting σGBR,Wind
24,t+24

is σGBR,Wind
48,t . We see contributions from the difference between Germany’s and Great Britain’s 2-day wind fore-

casts followed by the difference between France’s and Great Britain’s 2-day wind forecasts. Finally, we have other
features making small-scale contributions to this model’s predictions.

Figure 6: Feature importance for a LightGBM model predicting σGBR,Wind
24,t+24 using Shapley values.

Notably, the three most important variables identified by the tree based LightGBM and sparse regression match,
even though they use them in completely different ways. Further analysis on geographic and temporal relations
within the data is recommended based on these initial results on the interpretability of emerging trends and
relationships.

5 Impact

In the interest of quantifying the impact of our models on downstream business tasks, we focus on two fundamental
uncertainty metrics: coverage and spread. Coverage tells us if the true value falls within our predicted interval,
while the spread tells us how wide out uncertainty band is. One can recognize the trade-off between the two
metrics – if we increase the spread of our predictions, the coverage will be higher, and vice versa. An optimal
prediction would have full coverage while and a narrow spread. We use an adjusted Winkler score as a measure
of how good our forecasts are:

Wα,t =


(uα,t − ℓα,t) +

2
α (ℓα,t − yt) if yt < ℓα,t

(uα,t − ℓα,t) if ℓα,t ≤ yt ≤ uα,t

(uα,t − ℓα,t) +
2
α (yt − uα,t) if yt > uα,t.

(6)

To understand the business impact of our modelling, we need to remember that the standard deviation of ensemble
models making forecasts on a 24-hour horizon is the main quantity of interest throughout our project. On a
specific day, physical models give the business sense of what the weather is going to be in 48 hours, while our
models make predictions on what the 24 hour forecast is going to be the day after – both predicting for the same
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Indicator Country Model Improvement (%)

Wind FRA EC15 30.93
Wind NLD EC15 33.58
Wind GBR EC15 34.67
Wind GBR GEFS 34.69
Wind DEU EC15 30.14
Wind DEU GEFS 51.69
Temp. FRA EC15 28.31
Temp. FRA GEFS 49.89
Temp. NLD GEFS 50.89
Temp. GBR GEFS 53.76
Temp. DEU EC15 30.27
Temp. DEU GEFS 52.33

Table 3: Test set Winkler score improvement for a 24-hour forecast prediction over the initial 48-hour forecast

point in time. Therein lies the impact of our project – how much better is our prediction compared to the initial
48-hour forecast.

Having the Winkler score metric to measure just that, we compare scores for a 48-hour forecast with the 24-hour
forecast predictions using VAR as a model of choice due to its performance against other models. Table 3 reports
Winkler score improvements for different targets on the test set.

6 Conclusion and extensions

While this work achieved what it sought to, it also uncovered fruitful directions to extend and improve upon
what was discovered. Performance-wise, focusing on methods not applied in this study could boost results, or
indicate which methods are not suitable. In consideration of interpretability and insights, the work done in this
project indicates that further analysis into geographic and temporal relationships could end up being incredibly
meaningful. Lastly, we focused on predictions for σ24,t+24 as it could prove to be a valuable quantity for energy
trading. That said, examining performance at different time horizons and prediction intervals would be a valuable
extension, as the value of the forecast to different domains shifts with the time horizon and prediction interval.

The work done throughout this project shows that it is possible to forecast weather uncertainty at a future date.
Although we had to limit this paper’s scope to a methodology that was feasible to implement in the limited
time that we could allocate to this class, it is also important to mention other approaches and ideas that we
experimented with. One such direction is extending the modelling from predictive methods to generative methods
with Deep Generative Neural Networks. This extension is natural since rather than predicting a future interval of
the uncertainty space, it acts as an ensemble substitute by learning the underlying distribution that the physical
models induce.

Given the wide-reaching influence weather has on human and economic problems, the results of this work have the
potential to enable better decision-making across industries. Policymakers can leverage this information to help
improve natural disaster management. Furthermore, these predictions can help decision-makers and algorithms
hedge against risk by scaling weather-dependent portfolios accordingly. Across a wide range of domains, there is
no shortage of benefits that can be drawn from improved weather uncertainty knowledge.
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7 Appendix

7.1 Error correction

Residuals are observed to be linearly correlated with the target, indicating that we are not catching the full
variance of the underlying data. A linear model was trained on the residuals of the training data, as an error
correction model. The final model is then:

f̂∗ = f̂ + f̂error

This model structure was tested on the sparse regression and successfully corrected the linear relationship between
target value and residual. There is no obvious improvement or compromise with regards to performance, as the
corrected model outperforms the original model roughly half the time.

Figure 7: The corrected model residuals clearly has more random spread than that of the uncorrected model

11


	Introduction
	Data
	Methods
	Overall approach
	Leveraging multi-horizon forecasts
	Autogressive Integrated Moving Average Models (ARIMA/ARIMAX)
	Vector Autoregression
	Sparse Regression
	LightGBM

	Experiments & Results
	Model performance
	Model Interpretability
	VAR
	Sparse Regression
	LightGBM


	Impact
	Conclusion and extensions
	Appendix
	Error correction


