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ABSTRACT

Ice lead analysis is an essential task for evaluating climate change
processes in the Arctic. Ice leads are narrow cracks in the sea-ice,
which build a complex network [23]. While detecting and modeling
ice leads has been done in numerous ways based on airborne im-
ages [2, 6, 7, 13, 15, 17, 20, 28], the dynamics of ice leads over time
remain hidden [12] and largely unexplored. These dynamics could
be analyzed by interpreting the ice leads as more than just airborne
images, but as what they really are: a dynamic network. To this end,
we compiled a new dataset that contains dynamic ice lead graphs.
The data is based on the dataset by Hoffman et al. [6] which con-
tains daily ice lead observations from Moderate Resolution Imaging
Spectroradiometer (MODIS) between 2002 and 2020. In this project,
we conduct a spatio-temporal analysis of the ice leads with the
newly created graph data, exhibiting seasonal and annual trends in
the ice lead dynamics. We further perform a network analysis of the
ice lead graphs, which exhibit unique characteristics that diverge
from those present in common real-world networks. This new per-
spective of interpreting ice lead as networks reveals that challenges
such as ice lead forecasting and tracking might be feasible with
the right network science tools. However, current network science
methods, ranging from preferential attachment to EvolveGCN, are
not suitable for these tasks due to the distinctive structure of the
ice lead networks. From a network science perspective, the ice lead
networks represent a promising case study for the development of
more generalizable algorithms. From a cryospheric science perspec-
tive, the interpretation of ice leads as networks presents a unique
and new opportunity to track and forecast ice leads more efficiently.
This work reveals the potential of interpreting ice leads as networks
and is a call for extending current network analysis methods for a
new class of real-world dynamic networks.

KEYWORDS

ice leads, networks, dynamic graphs, graph neural networks

ACM Reference Format:

Julia Kaltenborn, Venkatesh Ramesh, and Thomas Wright. 2021. Ice Lead
Network Analysis. In Placeholder City "21: ACM Symposium on Fancy Re-
search Area, June 00-99, 2021, Placeholder City, State. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/placeholder

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Placeholder City °21, June 00-99, 2021, Placeholder City, State

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/placeholder...$0.00
https://doi.org/10.1145/placeholder

Venkatesh Ramesh
Université de Montréal & Mila
Montréal, Canada
venkatesh.ramesh@umontreal.ca

Thomas Wright
McGill University & Mila
Montréal, Canada
thomas.wright2@mail. mcgill.ca

1 INTRODUCTION AND MOTIVATION

The Arctic climate and sea-ice condition have strong feedback
effects on global climate [26], making the analysis of Arctic ice
dynamics key for climate change mitigation and adaptation. One
important factor in Arctic climate and sea-ice loss are ice leads
since they are massively involved in Arctic melting and climate
dynamics.

Ice leads are narrow, elongated cracks in the sea-ice that branch
and intersect to build complex networks [23]. While only 1 -2 %
of the central Arctic is covered by ice leads, they are responsible
for large heat releases from the Arctic ocean into the atmosphere,
driving more than 70 % of all upward heat fluxes [11]. The large tem-
perature and moisture gradients between air and water cause these
large heat exchanges, and in summer, the low albedo of open water
(<0.1) reinforces this effect further [11]." These heat exchanges are
a major driver of sea-ice loss, to the degree with which we can even
predict sea-ice loss with ice leads [29]. Due to their involvement
in Arctic energy fluxes, ice lead detection and modeling are highly
relevant tasks for polar scientists, as described further in Section 2.

A major aim within the ice lead research field is to understand
the dynamics of ice leads, i.e. their spatial and temporal behavior, as
well as their interaction with changing climate conditions. Arctic
climate models require detailed information about ice lead behavior
to simulate ocean-atmosphere interactions accurately [21]. Since
ice lead dynamics remain largely an open question [12], we propose
a new approach to analyze ice lead dynamics: a network analysis of
ice leads. The network perspective is a simplified, faster alternative
to current physical ice lead models and might enable, with the right
tools, lead branch forecasting and tracking.

Our results show that a spatio-temporal analysis of the ice lead
networks is not only possible but revealing. That said, tackling a
task such as ice lead forecasting will only become possible with
the adaptation of current network science methods for less usual
network structures. We unexpectedly discovered that the ice lead
networks pose some uncommon network characteristics, including
but not limited to planarity, disconnectivity, and high temporal
variability. These characteristics make e.g. many common link pre-
diction methods unsuitable for this type of real-world network. For
this reason, we present the ice lead network dataset to the network
science community to enable the study of this type of network and
the development of new, more generalized methods.

The contributions of this work are:

e Provide an ice lead network dataset based on the MODIS
observations from Hoffman et al. [6]

e Spatio-temporal analysis of the ice lead networks

o Network analysis of the ice lead networks

! A low albedo implies that more short-wave radiation from the sun is absorbed, causing
heating of the water masses.
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The concrete tasks this research project tackles are described
in Section 3. The Hoffman et al. [6] dataset on which the network
data builds upon is described in Section 4. Methods and experi-
mental setup used to perform the ice lead and network analyses
are explained in Section 5 and Section 6 and the respective results
and their discussion can be found in Section 7. Final thoughts are
included in Section 8.

2 RELATED WORK

Related work for this project includes works from ice lead detection,
analysis, and modeling, as well as the discovery of unusual networks
in the network science domain.

Prior to analyzing ice leads they first of all need to be detected
on airborne images. A lot of research has been done on ice lead
detection [2, 6, 7, 13, 17, 20, 28]. Almost each of the cited examples
used a different measuring technique, ranging from airborne lidar
systems [20] to CryoSat2 [28]. The distinct measuring methods
result in very different spatial and temporal resolutions, and pre-
processing algorithms, e.g. cloud masking is not always needed.
Additionally, further methods to segment and finally extract the ice
lead objects are necessary. Only after this heavy post-processing, it
becomes possible to analyze ice lead distributions.

Since the different detection algorithms need different subse-
quent analyses, only a few works have actually pursued the spatio-
temporal analysis of ice leads [21]. The network science approach
adds to the few work on temporal and spatial distribution analysis
of ice leads, providing additional analysis of the interactive behavior
of ice leads. In previous work, and also more generally, the analysis
of the ice leads can only be achieved for one type of dataset and
cannot be re-applied to datasets with a different detection method.
Our approach of network analysis could be applied to any kind
of measurement data as long as it is pre-processed and provides
summarized characteristics of the edges.

Other approaches to reveal the dynamics of ice lead exists, namely
tracking algorithms [7] and Arctic sea-ice models [15]. There are
only few ice lead tracking algorithms, but Hutter et al. [7] showed
that ice lead tracking is possible when provided with additional sea
ice drift information - even without extensive Arctic sea-ice models.
However, tracking reveals only the spatial part of ice lead dynamics
and lack predictive capabilities. In contrast, the modeling algorithms
are able to provide an extensive amount of information about ice
lead dynamics and are also used for forecasting [15].> However,
these physical models are not only modeling ice leads, they have
to model the complete ice dynamics taking into account many at-
mospheric and oceanic variables. A far simpler model encoding the
dynamics of ice leads might often suffice to solve challenges such
as ice lead forecasting and would be - most importantly - much
faster and computationally less intense than a physical model. The
network science perspective could provide the basis to develop
simple and fast approaches that still have the predictive capabilities
to address challenges such as ice lead forecasting.

Repeatedly, new kinds of networks [1] exhibiting uncommon
features [3] and unexpected behaviors of graphs [10] have been
introduced to the network science community. While the single

2There are also several other ice models, but the authors did not check them for their
predictive capabilities regarding ice leads.
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properties of the ice lead graphs can easily be found in other net-
works, we have - to the best of our knowledge - not found networks
with the joined properties we discovered here.

3 PROBLEM DEFINITION

The tasks addressed in this work can be split into (1) translating the
ice leads into graphs, (2) analyzing the ice leads in terms of spatial
and temporal distribution, and (3) analyzing what kind of network
the ice leads build. Point (3) includes firstly, analyzing network
properties such as connectivity, motifs, and more, and secondly,
performing common network science tasks such as link prediction
and graph classification.

The ice leads can be translated into undirected networks by in-
terpreting the leads (i.e. the open water area) as edges in a graph,
and the start/endpoints as nodes in a graph (see Figure 1). If two
ice leads are crossing each other, their intersection is interpreted
as a node as well. Intuitively, the interconnected black water lines
visible from an ice lead picture are exactly the graph that we extract
from our underlying data (Section 4). The nodes in the graph must
hold the geographical locations (e.g. longitude and latitude) as node
attributions and can be enriched with further location-bound infor-
mation (e.g. temperature). The edges can hold information about
the individual ice lead, such as width and length. Most notably, the
ice leads are observed in this work over time, i.e. that the networks
are dynamic networks with ice leads evolving over time.

The spatio-temporal analysis of the ice leads entails extracting
knowledge from the provided ice lead networks. This work provides
a detailed overview of spatial distributions, ice lead width and
length distributions, and a temporal analysis, since only few spatio-
temporal analyses have been provided so far. Additionally, the
network science perspective enables analyzing interactive behavior
between ice leads (e.g. by looking at diameters). The spatio-temporal
analysis is key to extracting unexplored, yet important knowledge
about ice leads from the dataset at hand.

The network analysis task aims to describe the type of network
that ice leads are building. To this end the properties of the network
must be analyzed, i.e. unique characteristics, as well as lacking
common properties must be revealed. Not only the properties but
also the applicability of common network science methods must
be examined. Since link prediction and graph classification are
interesting from an ice lead science perspective, several link and
graph classification methods are tested on the ice lead networks.
Graph classification on ice lead networks can be used to predict ice
extent or seasonality from a given ice lead network. Link prediction
translates to predicting where new ice leads might emerge in the
next time step. The network analysis reveals why studying this
type of network might be of interest to other network scientists.

To this end, the main questions addressed here are:

(1) Translate ice leads into graph:
Is it possible to interpret ice lead data as (dynamic) graphs?
(2) Spatio-temporal Ice Lead Analysis:
Can we derive properties and dynamics from ice lead graphs?
(3) Network Analysis:
How are these graphs different from other real-world graphs?
Are current network science methods suitable for this type
of network?
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Figure 1: Interpreting ice leads as network. The first image from left shows the satellite image of an ice lead set. The second
image indicates that start, end, and intersections points of ice leads are interpreted as nodes (visible as blue circles), with
longitude and latitude values as node attributes. In the third image purple, dashed edges are added between the nodes where
ice leads appear. Weight attributes of the edges can be e.g. the width of the ice leads. The underlying satellite image displays
the Beaufort Sea on February 23, 2013 and is obtained from NASA [24].

4 DATASET DESCRIPTION

As described in the previous section and in Figure 1, the ice leads
can be translated into networks by interpreting the start, end, and
intersection points of ice leads as nodes, and the ice leads themselves
as edges. The dynamic network can be built by joining several
observations of ice leads together. In an ideal dataset, the set of
nodes, edges, and their attributes can directly be extracted from the
data.

We use the ice lead dataset from Hoffman et al. [6] because of
its convenience for graph extraction. Numerous other data sets
provide detected ice leads in image or NetCDF formats (e.g. [16]),
which provide access to start, end, and intersection points of ice
leads. However extracting ice leads from these datasets is very
challenging: (1) The image sizes are too large to extract network
objects directly from the images with python tools such as NEFI
[4]. (2) The ice leads are fragmented and not joined together to the
branches they actually build on a global scale, which complicates
extracting the underlying network. Hoffman’s dataset overcomes
both of these challenges. In Hoffman’s dataset, the ice lead branches
are stored in txt files that are much easier to process, addressing
issue (1) and their algorithm connects smaller ice lead parts to larger
branches, solving problem (2). The daily observations of Hoffman’s
dataset contain start and endpoints of the ice leads, providing an
easily accessible, initial set of nodes and edges.

Hoffman’s dataset provides us also with node and edge attributes
as well, however, are lacking the intersection points of ice leads.
The start and endpoints of the ice leads are given in longitude and
latitude values, which we use as node attributes. Provided informa-
tion about the width, length 3 and open water area of the branches
are used as edge attributes in our networks. Additional information,
such as the region in which the ice leads were discovered is not of
any concern here. Notably, the dataset does not provide intersection
points of ice leads, which consequently must be calculated during
our graph-translation procedure (see Section 5.1).

3actually "great circle length": length of a line a sphere, since the ice leads are on a
globe

Hoffman’s dataset contains daily ice lead observation from 2002-
2020. Since the cloud coverage in the Arctic summer is comparably
high to the other seasons, the dataset contains only very few exam-
ples of summer observations. The dataset can be accessed via ftp
under the following address: ftp://frostbite.ssec.wisc.edu/.

5 METHODOLOGY

The methodology section is divided into three parts describing the
process of translating the ice leads into graphs, analyzing the spatial
and temporal distribution of ice leads, and analyzing the structure
of the network and how well common network science methods
can be applied to this network.

5.1 Ice Leads to Graph Translation

Depending on the dataset, different methods must be employed to
translate ice lead data into graphs. For example, the direct process-
ing of ice leads from image data requires different methods than
the ones described here. However, any kind of ice lead observation
can in principle be translated into the data format we use in this
work, where the geographic location and important properties of
ice lead branches are given or collected. As a result, the translation
method described in the following extends to a majority of ice lead
datasets. 4

As a first step, naive graphs are generated from the start and
endpoints of the ice lead branches collected in Hoffman’s dataset
[6]. The start and endpoints become a set of nodes, with longitude
and latitude values as attributes. The pairings of start and endpoints
that define the ice lead branches provide also the edges of the graph,
with weights such as width and length of the ice lead. Notably, the
graph that has been created lacks intersections between ice leads
and the ability to connect very close ice leads that are e.g. partially
separated by ice drift.

Intersections between ice leads can be calculated from the ge-
ographical locations of the end and start points of the ice lead

4This is especially the case since direct network extraction from ice lead images is
challenging as described in Section 4.
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branches. The pseudo-code describing how intersections are com-
puted and added to the graph can be found in Algorithm 1. First, the
given longitude and latitude values are projected onto an azimuthal
equidistance coordinate system (ESRI:54032) to enable precise geo-
metric calculations. On the projected map, all possible intersections
for a set of ice leads are calculated. The identified intersections
are added as new nodes into the graph. The two edges that are
intersecting are deleted and replaced by four edges meeting at the
intersection point. The node attributes of this newly added node
are computed by back-projecting the intersection coordinates into
the longitude-latitude system (EPSG:4326). The weights of the new
edges are either taken over from the old weights (e.g. for width)
or computed (e.g. for length). Special attention must be paid to
the case where one ice lead intersects several times with other ice
leads. After adding the intersection points as nodes to the graph,
the node degree increases and individual ice leads have been split
into sub-parts.

The graph can be further improved by summarizing close nodes
together to one node. This way ice leads that are shortly disrupted
by ice parts can be connected, and ice-shattered lead intersections
are actually represented as intersections. This has not been incorpo-
rated due to the limited resources and restrictive timeline associated
with this project.

After adding ice lead intersections to the graph, a more appro-
priate graph representation of the ice lead networks is obtained.

Algorithm 1 Add Ice Lead Intersections to Graph

: Graph « Vanilla ice-leads graph

: for node=1,2,...,N do

node.X, nodeY « Project(node.Longitude, node.Latitude)

. end for

. intersections < empty list

: foredge =1,2,...,E do

for next_edge = edge + 1,edge + 2,...,N do
intersections.Insert(if_Intersects(edge, next_edge))

end for

. end for

. for intersect in intersections do

O N U W N e

-
= o

12: long, lat < BackProject(intersect.X, intersect.Y)
13: graph.Add(new node, long, lat)

14: new_lengths < Calculate new lengths of edges

15: graph.Add(new edges, old widths, new_lengths)
16: graph.Delete(old edges)

17: end for

5.2 Ice Lead Analysis

The spatio-temporal analysis of the ice lead graphs is performed
to reveal new knowledge about ice lead behavior and its change
over time. We analyze the graph both from a static perspective
and a dynamical perspective, i.e. we look at the changes in ice lead
properties over different time horizons.

In the static analysis, the individual behavior of each graph
is measured and the results are averaged over all graphs. In the
dynamic analysis, these behaviors are observed in the context of
time, i.e. that seasonal cycles are exposed as well as larger behavioral
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changes over the complete time span. The former is important in
understanding how ice leads change throughout a year, exposing
potentially important features for forecast models. The latter is
important to analyze how the properties and the distribution of ice
leads change in the context of climate change.

We use the following ice lead properties to describe the behavior
of the ice lead graphs:

e Geographical location (longitude and latitude)
o Length of ice leads

e Width of ice leads

o Total water area of ice leads

e Number of ice leads (size of network)

The methods for analyzing the interactive behavior of ice leads
are covered in the next Section 5.3 about network analysis. Looking
at degree distributions, the behavior of graph diameters over time
and connectivity values can reveal knowledge that remains hidden
in the common spatio-temporal analysis.

Analyzing the properties of the ice lead network over different
time horizons provides the cryospheric community with a detailed
temporal analysis of ice lead behavior.

5.3 Network Analysis

The network analysis part involves both looking at general network
properties and structure, as well as applying common network
science methods to solve well-known tasks such as link prediction
and graph classification.

5.3.1 Network Properties. In order to analyze the structure and the
characteristics of the ice lead network as well as their interactive
behavior the following properties are analyzed:

e Planarity

e Connectivity

o Triangles and transitivity
o Clustering coefficient

e Assortativity

Furthermore, we look at degree distributions and if the small-
world phenomenon holds, as well as whether the average node
distance shrinks over time - both phenomena that can be found in
common (dynamic) real-world networks [8, 10].

5.3.2  Network Methods. Since the ultimate goal is to tackle a chal-
lenge such as ice lead forecasting with the help of ice lead networks,
we further analyze to what extend link prediction methods can be
applied to this type of network. We also touch upon graph clas-
sification, which is interesting for predicting sea ice coverage or
seasons, however, the main focus lies on link prediction.

We used both a set of simple link prediction methods to operate
on static graphs and we chose to use EvolveGCN [14] for a temporal
setting of link prediction. In both settings, we assume that a set
of edges is already known, while 5%, 10%, or 20% of the ground
truth edges are dropped. The task is to predict those missing edges,
indicating where ice leads are most likely to be found in the current
setting.
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Figure 2: The ice-lead distribution for a graph from January 1st, 2014 which shows the zoomed-in network structure for some
areas.

January 2014 April 2014

Figure 3: The geographical distribution of ice leads over over a few selected months in 2014.
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For the static setting only one single, static ice lead network is
considered. The following methods were applied for this setting:

e Jaccard Coefficient

e Resource Allocation Index
e Adamic Adar Index

e Preferential Attachment

All static link prediction methods available on Networkx that do no
require cluster labels and were used. These methods are regarded
as the “standard” methods for local similarity-based link prediction
[9] and are usually employed. For the dynamic setting use only
one method, namely EvolveGCN [14]. The nature of our dataset
determines the set of possible methods that can be used for link
prediction. Since Hoffman’s dataset does not provide ice lead track-
ing, the resulting temporal graph can be described as a sequence of
discrete graphs [22]. Thus, discrete dynamical GNNs are chosen to
perform the link prediction task. We identified three different mod-
els suitable for link prediction where nodes are added and deleted
in different time-steps: DySAT [19], HDGNN [30] and EvolveGCN
[14]. Due to its time-spatial integrated approach and code availabil-
ity, we settled for EvolveGCN to perform link prediction on the
dynamic ice lead graphs.

EvolveGCN uses a recurrent neural network (RNN) to update
the weights of its integrated graph convolutional network (GCN).
The weights can be either regarded as hidden states or as in- and
outputs of the RNN. Pareja et al’s approach offers flexibility since
the RNN and GCN can be easily replaced by alternative models (e.g.
using a Long Short-Term Memory instead of the provided RNN).
By using an RNN to evolve the GCN weights, EvolveGCN achieves
to represent the dynamics of successive discrete graphs. [14]

We apply EvolveGCN to a link prediction setting where from
a time-series of four ice lead graphs the missing edges in the last
time step should be predicted. We also apply EvolveGCN for a
graph classification task, where the current Arctic season should
be predicted from a time-series of four ice lead graphs.

If link-prediction were possible with the described methods, this
would be a major step to address the challenge of ice lead forecasting
that can only be solved by complex physical models to date.

6 EXPERIMENT SETUP

The experimental setup of this project explains the environments
for the graph translation and the network analysis as described in
the following paragraphs. The spatio-temporal analysis requires no
further specific experimental setup. Throughout the whole project,
we use Python 3.9 and all experiments can be replicated with the
code provided on GitHub. >

During the graph translation process, 3880 daily observations
from 2002 - 2020 were translated into NetworkX graphs [5] and
the functions provided by NetworkX were used to analyze the
network properties. For the computation of ice lead intersections,
the vectorized functions provided by PyGeos [25] proved helpful
to reduce computing time massively. Both a parallelized and a
non-parallelized version of the graph translation method exist to
address different demands: The non-parallelized graph translation
takes on a local machine with Intel® Core™ i7-6700HQ CPU @
2.60GHz (only 1 core used) approximately 30 minutes for one dataset

SCode will be published here: https://github.com/liellnima/iceagle
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with ~20 000 ice leads and approximately 3 minutes for a dataset
with ~ 8000 nodes. Depending on the number of used CPU cores,
the parallelized version is several factors faster but needs a RAM
of ~60GB for a dataset with 20,000 edges. In contrast, the non-
parallelized version has constant RAM usage. In summary, two
different experimental setups for graph translation are provided
to match the different resources potential users have at hand. In
practice, we run the code on a compute cluster instance with 64 GB
memory and 8-CPUs (2x AMD EPYC Zen) in a parallelized manner.

For the network analysis, methods from the NetworkX package
[5] proved useful. The properties of the graphs as well as the static
graph link prediction method all stem from NetworkX. EvolveGCN
was implemented with the help of the Pytorch Geometric Temporal
package [18].

7 RESULTS AND DISCUSSION

This section presents the results obtained for the ice lead to graph
translation, the spatio-temporal ice lead analysis, and the network
analysis. The results are discussed here as well with a special focus
on the limitations of the dataset and the chosen methods.

7.1 Ice Lead to Graph Translation

The ice leads could successfully be translated into NetworkX graphs.
The addition of intersections is time-consuming but can be done.
Subsequent analyses of the networks were possible and reveal-
ing. Per every single graph, few intersections (<100) were found
compared to the respective large amount of edges (10k - 40k).
The biggest limitation of the provided dataset is that it does
not yet contain any node summary. While easy to implement, run-
ning the algorithm to find close-by nodes is once again very time-
consuming. We expect that the resulting network produced by
employing node summaries would have much higher connectivity
and higher degrees. See Figure 2 to get an intuition of the impact
of node summaries: In the left corner, a zoomed-in picture can be
seen that shows the detected ice leads. It becomes apparent that
many lines are only shortly disrupted by ice - most likely caused
by ice drift and ridges - and could be joined together to form fewer,
yet longer ice leads. Indeed from farther away (zoomed picture
on the right), the underlying ice lead network can be seen, since
the disruptive parts are not visible anymore from distance. Node
summary will be an essential feature for capturing the parts of the
ice lead networks that become hidden under shallow ice debris.

7.2 Ice Lead Analysis

A primary focus of this work is to understand the temporal and
geographic shifts these ice lead networks experience. In the follow-
ing the geographical distribution, as well as temporal distribution
of width, length, size, and total area of the ice lead networks are
presented and discussed.

In Figure 3 the geographical distribution of ice leads through-
out one year can be seen. There are clear differences - especially
in the number of ice leads - over the four months which can be
attributed to the seasonal cycles of the Arctic. Interestingly, the ice
leads wander closer to the center of the Arctic during the winter
months, while at the same time, expanding further south. The south
expansion in winter is simply caused by a larger ice cover that is
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not present in the summertime. The fact that ice leads are mostly
occurring at the edges of the arctic sea-ice during the summertime,
is a phenomenon that remains to be examined further.

We also looked at the geographical distribution of ice leads on the
same day over a nearly 20-year span (see Figure 13 in the appendix).
Clearly, these networks look very different year-to-year and have
experienced quite drastic shifts over the past two decades. These
shifts could, however, be simply attributed to the different ice sheet
dynamics that produce different distributions of ice leads each year.
Still, one dense cluster of ice leads that appears at the left corner of
the images first decreases and then disappears completely in the
end. A large ice floe that broke off the Arctic due to global warming
and climate change could be an explanation for this observation.

The size of the total ice area of the ice lead networks goes through
seasonal shifts, as can be seen in Figure 5 and Figure 7. Furthermore,
both show a slight decrease over the complete time span (see Figure
6 for the size). The seasonal shifts can be attributed to the ice loss
during the summertime and we suspect this is due to the increased
surface area of water that comes from melting. It is important to
mention that there are very few data points during the summer
months because of the intense cloud coverage over the Arctic during
this period. Still, the seasonal trend becomes apparent. The overall
trend of decreasing ice lead numbers in Figure 6 can similarly be
attributed to the loss of average annual Arctic sea-ice in the last
years.

We were curious to see how the average width of ice leads varies
over time, given the width of an ice lead determines the amount
of heat loss it may experience from the ocean into the atmosphere,
accelerating melting processes in the Arctic [11]. These results,
presented in Figure 4 show seasonal trends (rather small as can
be seen in Figure 8 in the appendix). However, they lack a strong
long-term structure and pattern beyond a gentle negative slope in
the linear regression fit. The gentle negative slope indicates that the
ice leads are decreasing in width. Thinner ice leads actually cause
greater heat fluxes, indicating that a positive feedback loop may be
at play. Notably, there are some extreme outliers observed. Further
work in identifying the root causes of these outliers is recommended
to complement the development of prediction methods in this space,
to ensure that tail events are adequately captured.

The length of the ice leads encodes to a certain degree how stable
the ice floes are - a high number of long ice leads indicates that
more ice floes are fragmented and are losing their integrity. The
seasonal trends of the ice lead lengths are not highly obvious (see
Figure 9 in the appendix), but similarly to the width graphs, a high
number of outliers can be observed in the overall time trend (see
Figure 10. There is a recent accumulation of outliers in the last
years (few very long ice leads), indicating that the integrity of some
ice floes might be increasingly endangered more recently.

While it is very well known that ice leads are subjected to sea-
sonal trends and that ice sheets are constantly shifting, some of
the described results are actually new: The trend that the number
and of ice leads is decreasing is new and fits into the observation
of shrinking ice coverage. The slight decrease in width is revealed
here for the first time and should be investigated further due to the
possibility of discovering a positive feedback loop here. The anom-
alies of ice lead lengths in recent years is another new discovery
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from the ice lead analysis that could be used for the analysis of ice
floe stability.

7.3 Network Analysis

The network analysis showed surprisingly that the networks pre-
sented here are considerably different from common real-world
networks. Due to their unique characteristics, common network
science methods are not able to perform link prediction and graph
classification on this type of network. We highlight, that the net-
works carry information that could be used to tackle these tasks,
however, they are encoded in different properties than common
real-world networks.

7.3.1  Network Properties. While common real-world networks are
highly connected graphs, with multiple motifs and high transitivity,
subject to the small-world phenomenon and shrinking diameters
over time, the ice lead networks exhibit none of the properties. The
networks exhibit the following properties:

Planar

Euclidean

Very short paths (mostly node pairs present)

No motifs such as triangles

No transitivity

Disconnected, connected components close to total number
of edges

No cluster or communities

No small-world phenomenon

Diameter follows seasonal trends

Linear degree distribution on a log scale (and not log-log
scale, see Figure 12)

We did not expect to find these networks diverge so strongly
from common most real-world networks and want to highlight that
ice leads pose an interesting, new and unexplored network class
that calls for further investigation.

Some might argue that such networks seem to lack relevant
interactive information that is usually encoded in these properties.
However, the ice lead networks clearly do not lack structure or
identifiable characteristics, it is simply encoded through different
properties of the network than other real-world networks. The
structure of the network for example is not defined via its con-
nections, but much more via its positions in the euclidean space.
Furthermore, no clusters or communities can be detected in these
networks, however, when examining a picture of the networks as
given in Figure 2, it becomes apparent that there are geographical
clusters in the graphs. They may not be encoded in the connections
of the network, but rather by their proximity and similarity (curves
following the same paths and patterns, i.e. this information is en-
coded in the euclidean space). No motifs can be found, but different
and repeating patterns can be seen nonetheless.

7.3.2  Network Methods. All the link prediction methods that we
applied to the ice lead dataset failed - we suspect that the main rea-
son for that is the unique characteristics described in the previous
section.

The link prediction methods for the static graphs fail no matter
how much percent (5 %, 10%, 20%) of the edges are dropped. All
methods fail to predict even one missing edge correctly, i.e. that
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Ice Lead Network Avg. Width Over Time
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Figure 4: The average width of ice leads over time. The av-
erage of each year is included as red stars. Slope of annual
average regression line: —5.49 - 1074 meters per year.
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Figure 5: Total ice lead area by month across the entire
dataset.

accuracy values and other metrics do not exceed 0.00 significantly.
Table 1 lists our reasoning why each link prediction method failed.
The Jaccard Coefficient increases with the number of common
neighbours between two nodes - with an average degree of 1 there
are practically no common neighbours and the method can only fail.
The Adamic Adar Index calculates similarity scores based on shared
features and weights the scores according to degree. Once again
the common neighbours, and additionally the euclidean nature of
the node attributes make it practically impossible to predict new
links. The Resource allocation index fails for very similar reasons,
since it works similarly like Adamic Adar Index, and only weights
the scores differently. Preferential Attachement works especially
well for scale-free networks, where large degree nodes are densely
connected and low degree nodes are rarely connected. Since the
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Ice Lead Network Size Over Time
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Figure 6: The size of ice lead networks over time. The average
of each year is included as red stars. Slope of annual average
regression line: —193.9 ice leads per year.
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Figure 7: Network size (number of ice leads) by month across
the entire dataset.

ice lead network is sparsely connected and does not follow scale-
free-laws, preferential attachment cannot perform well.

The main problem of the static link prediction methods might
be that they are all from the domain of local similarity indices.
Global and quasi-local similarity indices should be tried as well
since they consider the whole topography of the network. Since
the overall ice lead topography is very homogeneous and does not
reveal new information, the authors are sceptical if those methods
would perform better, however for completeness sake they could be
considered in future work. To generate a complete picture of static
link prediction, additionally dimensionality reduction-based and
probabilistic/maximum-likelihood-based might be of interest. [9]
We would like to highlight, that from all link prediction methods
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node embeddings (from the domain of dimensionality reduction-
based methods) might be the most promising ones, since the eu-
clidean information could theoretically be encoded in the embed-
dings. However, even the node embedding method must be adapted,
since the underlying similarity measurements are currently based
on network topography. To summarize, all alternative static link
prediction methods rely on topographic similarity, which the ice
lead networks cannot provide.

The main reason why all these methods fail - and also further
common link prediction methods will fail - is that the relevant
information exploited from link prediction methods is the structure
of the networks. As can be seen in the zoomed-in figure in Figure
2, the ice lead graph consists mostly of single edges that are not
connected with each other. Since scaling the edge-dropping (e.g. to
20%) does not affect the performance, we conclude that necessary
similarity information is not only less encoded into the topographic,
but rather not encoded at all. There are two paths to solve this
general problem: (1) A link prediction method is applied that does
not exploit the structure of a network to derive new linkages, but
rather its euclidean structure. (2) The dataset is adapted such that
relevant information is included in the topography of the network
and not in the node attributes / euclidean space.

Also the dynamic link prediction method (learning-based) - the
EvolveGCN - failed on the time-series link prediction task. The
implementation of the EvolveGCN algorithm already posed many
obstacles, since e.g. no edge variation is expected within the time-
series. While of all learning-based link prediction methods EvolveGCN
allows the largest variability of graphs, the ice lead networks still
demand more variability. The set of nodes, its node attributes, the
set of edges, and its edge attributes - all of these are changing from
one time step to another. While the algorithm can be adapted to
accept even this amount of variability, the method itself needs at
least one scale that remains fixed to succeed. We conclude so far,
that EvolveGCN can currently not perform link prediction on the
ice lead networks.

There are no other alternative methods for dynamic link predic-
tion available so far that could coop with the amount of variability
present in the ice lead networks. In order to make dynamic link
prediction possible two path could be followed: (1) Developing a
new method similar to EvolveGCN with the euclidean space as a
fixing point; (2) Fixing one scale in the dataset, e.g. by tracking the
ice leads which would result in a fixed set of edges.

The graph classification with EvolveGCN faces the same chal-
lenges and problems as the link prediction task and fails similarly.
However, the graph classification task can be simplified further to
a pure static graph classification problem, which might overcome
some of the problems.

We believe that link prediction and node classification are still
possible on the network dataset, however, further research is nec-
essary for this. The information in the euclidean space can be used
and furthermore, tracking of the nodes could create a fixed set of
edges that consequently also enables the use of EvolveGCN.

7.4 Future Work

Future work includes improving the ice lead network construction
algorithm to incorporate node summarization in order to provide

Placeholder City ’21, June 00-99, 2021, Placeholder City, State

Methods Mode Reasoning
Not h
Jaccard Coefficient Static ot enougn common
neighbours
Nearby nodes don’t
Resource Allocation Index  Static earby nodes don
share common features
Nearby nodes don’t
Adamic Adar Index Static carby nodes donl
share common features
Preferential Attachement Static Sparsely connected nodes
EvolveGCN Dynamic High temporal variability

Table 1: The methods used for the analysis and the reasoning
for their failures.

more realistic networks. Furthermore, the results from the net-
works and ice lead analysis can be improved via more thorough
collaboration with cryospheric experts to help uncover the mean-
ing behind these findings for the characterization of ice leads and
their dynamics. The current link prediction and graph classification
methods in the field of network science need to be modified to be
able to perform adequately on ice lead networks. We believe that
EvolveGCN could be adapted and transformed to handle graphs
that have a higher spatial variability and range in the euclidean
space. Further, we propose that looking into the task of ice lead
tracking from a network science perspective; i.e. Node embeddings
and alignment might be the path forward towards ice lead tracking
more efficiently and accurately. In summary, looking at ice leads
from a network science perspective opens many new doors and
could be used to bring actionable insights to the climate science
community as well as serve as a case study for the machine learn-
ing community in creating more generalizable network science
algorithms and methods.

8 CONCLUSION

In this project, we discovered that ice leads can be analyzed from a
network science perspective and that the ice lead graph properties
diverge from common characteristics of real-world networks. As a
result, the application of current link prediction techniques failed
on these graphs. This is not to say ice lead networks lack structure,
as they exhibit identifiable unique features and characteristics that
could be leveraged in novel forecasting methods.

The successful ice lead analysis confirmed that ice leads are
subject to seasonal changes and that their width is power-law dis-
tributed (see also [11]). It additionally revealed more global trends,
such as that the size of ice lead networks is shrinking, the width of
ice leads is slightly decreasing and the length distribution shows
more anomalies in recent years. The authors offer shrinking sea-ice
coverage as a possible explanation of these phenomena, however,
it remains open to attribute these changes to a concrete cause.

We believe that a network science perspective on ice lead net-
works is meaningful to both the cryospheric community as well as
the network science community. Novel cryospheric insights, e.g. re-
garding ice floe stability, can be drawn from this perspective, while
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the unique structure of ice lead networks makes them a fantastic
case study for the development of more generalizable algorithms.
The network data will be made readily available ¢ and we recom-
mend machine learning practitioners to collaborate with domain
experts to build off of this work.

Ice leads play a key role in Arctic heat fluxes [11] and can be
used to predict sea ice loss [29]. Consequently, improving tracking,
analysis, and forecasting of ice leads is essential to enhance our
understanding of the Arctic sea ice and climate system. The value
of this knowledge becomes clear when looking at the effects of sea
ice loss: Millions of people must relocate, many wildlife species
lose their habitat, methane release is increased, and more [27].
This project contributes to understanding the Arctic processes that
we need to fathom to mitigate climate change and adapt to its
consequences.
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9 APPENDIX

Supplementary figures for additional results.
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Ice Lead Network Avg. Length Over Time
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Figure 9: Ice lead length by month.
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Figure 11: Ice lead network diameter by month.
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Average Degree Distribution over 3 years
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Figure 12: Degree distribution of ice leads over three years.
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Figure 13: The geographical distribution of ice leads over the span of the entire dataset (2002 - 2020).
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