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Abstract

Electricity generation is the foremost contribut-
ing sector to the global anthropogenic carbon
footprint. Load forecasting plays an important
role in reducing inefficiencies in the grid, helping
to decrease unnecessary greenhouse gas (GHG)
emissions. Given their effect on demand and the
generation of renewables, weather patterns have
varying consequences with respect to the grid, in-
cluding causing blackouts and wasting resources.
These effects are expected to grow in numbers and
severity as climate change’s (CC) influence on
weather increases. While probabilistic machine
learning methods are gaining traction in this do-
main, little research has been done to understand
the effect of weather specifically on these proba-
bilistic forecasts. In this paper, we investigate this
impact through a case study on two grids, Alberta
and the Netherlands, applying quantile random
forests (QRF), quantile gradient boosting (QGB)
and Bayesian long short term memory (LSTM)
networks. Experiments are conducted on two time
horizons, namely 1 hour and 24 hours, both with
and without weather data. The nature of these
forecasts and their means of evaluations limit us
in definitively asserting that the models improve
in absolute terms as a result of the incorporation
of weather data. That being said, the trends ob-
served indicate that including weather data, in
particular forecast weather data, more often than
not improves probabilistic forecasts, and always
improves at least one of the two main metrics used
in evaluation. This work is meant to highlight pre-
liminary results, as well as to provide insight as
to how further developments can be leveraged in
practice and contribute to the decarbonization of
the electric grid, encouraging further research on
the topic.
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1. Introduction
1.1. Electricity Grids and Climate Change

The generation of electricity is the leading contributor to an-
thropogenic global warming, accounting for 25% of global
GHG emissions according to IPCC’s 2014 report on CC
(Pachauri et al., 2014). Efforts to transition power generation
to renewable energies are aggravated by steadily increasing
demand. In 2018, global electricity demand grew by 4%,
nearly twice the rate of overall energy demand (IEA, 2019).
Between 2018 and 2050, power generation is expected to in-
crease by 79% (Kahan, 2019), making the decarbonization
of electric grids an essential challenge to overcome in order
to meet the goal of the Paris Climate Agreement of hold-
ing global warming below 1.5 degrees Celsius compared to
pre-industrial era.

Due to a lack of large-scale energy storage, electricity sup-
ply must constantly and instantaneously match electricity
demand (Rolnick et al., 2019; Pierpont et al., 2017). Accu-
rately forecasting generation as well as demand is therefore
a vital aspect of grid operations. For deregulated electricity
markets, system or transmission operators balance supply
and demand to ensure safe and stable operation. The oper-
ators schedule different types of reserves typically distin-
guished by the time-horizon of their deployment. Moment-
to-moment changes are compensated by automatic genera-
tion control (AGC), a system that allows generators in power
plants to adjust to the system frequency (Glavitsch & Stof-
fel, 1980). On a timescale of minutes, the spinning reserve
stabilizes electric grids. Generators that are already synchro-
nized to the grid increase or reduce their power output to
level demand and supply. For intraday and daily balancing,
the ability to ramp-up additional generators is important in
case of misalignments.

A drawback of most renewables is their limited suitability
as reserves. Wind and solar power are generated in non-
synchronous generators. Additionally, the intermittency of
renewables increases the need for reserves (Denholm et al.,
2016). For instance, when demand peaks in the evening,
solar energy is phasing out as the sun sets (Pierpont et al.,
2017).

Precise demand forecasting is becoming increasingly impor-
tant to facilitate grid operation, reduce the need for (often



GHG emitting) reserves, and allow for a higher penetra-
tion of renewable energy into electricity grids (Islam et al.,
2020).

1.2. Forecasting Demand in Electricity Grids

As mentioned in section 1.1, electricity demand forecast-
ing plays an essential role in managing the supply-demand
system of the electricity grids and their markets. Addition-
ally, long-term demand forecasting can play an important
role in the sustainable development of countries, allowing
them to plan for resources and better schedule for reserves
(Ghalehkhondabi et al., 2017). The nature of the electricity
usage, however, is extremely complicated and dynamic. It
depends upon a spectrum of variables, such as the weather
and socioeconomic factors, necessitating the use of sophis-
ticated algorithms to predict the future energy consump-
tion accurately (Weron, 2014; Ghalehkhondabi et al., 2017).
However, even in the most sophisticated models, forecasting
errors are unavoidable. These errors can cause significant
social and economic problems and even be disastrous in
extreme circumstances; underestimating these forecasts can
lead to power outages while overestimating them can lead to
a waste of resources (Son & Kim, 2020). Current methods
of load forecasting rely on providing point forecasts, mean-
ing they only return a single numerical value and cannot
give any information regarding the uncertainty associated
with it. Understanding the uncertainty in these forecasts
can help electricity grids operate more efficiently and might
be useful in avoiding some of the adverse consequences of
forecast errors mentioned above. As an alternative to point
forecasts, probabilistic load forecasting (PLF) can help pro-
vide a more comprehensive understanding of the trends in
the electricity consumption.

1.3. Impact of Weather on Electricity Demand

The electricity use by residential, commercial and industrial
sectors is heavily dependent on the climactic conditions
(Auffhammer et al., 2017). For example, the electricity re-
quired for heating and cooling of residential spaces, which
is estimated to account for half of the residential electric-
ity load, is highly contingent on the ambient temperature
(Allen-Dumas & Cunliff, 2019). Weather itself, however, is
chaotic and difficult to predict, which makes predicting its
impact on future electricity consumption equally difficult.
Additionally, as CC-induced shifts in the weather patterns
become more severe in the coming years, we can expect
volatile and unforeseen trends in global energy consumption
(Auffhammer et al., 2017). Consequently, understanding
the weather-dependent uncertainty in the predictions of elec-
tricity demand forecasting models, will become even more
important in the future.

Moreover, the increasing integration of renewables into the

grid will present additional challenges for forecasting mod-
els. Due to weather-related intermittency of power genera-
tion via renewable sources, having a better understanding of
the uncertainty associated with predictions becomes more
important: it will allow grid operators to perform better risk
analyses incorporating it into their management strategies
(Hong & Fan, 2016).

As we shift towards the large scale deployment of smart
grids (electricity grids that allow for two-way communi-
cation and incorporate sophisticated monitoring systems),
consumers modulating their demand, a practice known as
demand response, will begin to play an increasingly impor-
tant role in operation of efficient grids. Additionally, we are
beginning to see a growing incorporation of renewable gen-
eration methods (Hong & Fan, 2016). As renewable energy
is highly dependent on favourable weather conditions, its
impact on the supply of electricity will become even more
prominent. This effect on the supply, and hence on the price,
will encourage consumers to exploit renewable generation
by engaging in the practice of demand response at larger
scales, leading to a direct and growing impact of weather on
load (Siano, 2014).

Given the fundamental importance of decarbonizing the
electric grid in the pursuit of mitigating GHG emissions, we
seek to better understand the important influence weather
conditions have on PLF. The additional information ob-
tained via accurate probabilistic forecasts that incorporate
weather data can then be leveraged by the entities involved
to help increase grid efficiency.

The paper is organized as follows: Section 2 provides an
overview of related work researched before and throughout
the completion of the study. In section 3, we introduce the
design of our study, including a description of the datasets
used, required preprocessing and specific algorithms tested.
An overview of our results is provided in section 4, examin-
ing the performance of the models at different time horizons
separately. These results are further analyzed and discussed
in section 5. In section 6, the pathways to impact of this
work are illustrated, advocating for further work to be pur-
sued. Some general considerations regarding the work done
are elaborated in section 7. Finally, given the promising
preliminary results obtained, suggestions for future work
are touched on in section 8.

2. Related Work
As demand forecasting plays an important role in power-
system planning, there has been a substantial amount of
research done in forecasting models. The majority of the
models used for this purpose are statistical models, which
rely on historical demand data to perform time series fore-
casting. Among these models, the most widely used are
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autoregressive integrated moving average (ARIMA) models
(Vivas et al., 2020). These models are more sophisticated
than classical regression models and can be applied to non-
stationary data (Ghalehkhondabi et al., 2017). In addition
to classical statistical and mathematical methods, in recent
years, machine learning models have also been used for
electricity load forecasting due to their ability to model com-
plex non-linear relationships and handle large amounts of
data as well as their generalization ability (del Real et al.,
2020). For example. González-Briones et al. (2019) perform
a comparison between standard machine learning models,
such as support vector regression (SVR), K-nearest neigh-
bours (KNN) and random forest (RF) for point forecasting
of electricity demand. In addition to these models, deep
learning models which have shown considerable success
in other time series forecasting tasks, such as stock-market
price forecasting (Son & Kim, 2020). These include are
broadly categorized into two groups: simple feed-forward
networks (FFNs) and recurrent neural networks (RNNs). As
an example, Muzaffar & Afshari (2019) develop a LSTM
network for load forecasting over multiple horizons (daily,
weekly and monthly). They also perform a comparison with
standard forecasting models such as ARMA and SARIMA
and show that especially for short term forecasting, LSTM
outperforms the other models.

As mentioned in section 1.3, most of the energy consump-
tion forecasting models are only able to provide point fore-
casts. However, in recent years, there has been a growing
interest in PLF over point forecasts. For example, in 2014,
the Global Energy Forecasting Competition (GEFCom2014)
was held where the contestants were required to provide one-
month ahead hourly probabilistic demand forecasts (Hong
et al., 2016). Hong & Fan (2016) provide a tutorial review
of the PLF methodologies and evaluation metrics.

As with the point forecasting methods, the literature on
PLF include a mixture of traditional statistical and machine
learning models as well as simulations. For example, Wi-
jaya et al. (2015) use Generalized Additive Models (GAM),
a computationally-inexpensive to model the time-varying
mean and variance of the national electricity demand of
France. Other methods include using ensemble approaches
with quantile regression forests (QRF) and gradient boost-
ing (GB) (Kong et al., 2019). For instance, Nagy et al.
(2016) apply gradient boosting decision trees (GBDT) and
QRF to obtain probabilistic solar and wind power forecasts
(as opposed to demand forecasts) and show that these en-
semble models are able to obtain outstanding performance.
However, they also mention their drawback of being com-
putationally expensive and time consuming to train; a cost
that can be especially problematic for short term load fore-
casting (STLF), where hour-ahead predictions are required.
(Kong et al., 2019) address the computation and time cost of
the ensemble models by developing an improved weighted

extreme learning machine (IWELM) for STLF.

As Hong & Fan (2016) mention, a downside of current
PLF models is that they fail to address the weather-related
uncertainty in their forecasts and how it affects their pre-
diction intervals (PI). Weather forecast errors, however, can
be significant and as a result can have a serious effect on
the accuracy of demand forecasts (Taylor & Buizza, 2002).
Furthermore, weather models have been previously used
in input-scenario models for PLF. In these models a point
forecasting model is fed with various input scenarios (for
example weather patterns) and the outputs are used to form
a probabilistic predictions (Hong & Fan, 2016). For in-
stance, Taylor & Buizza (2002) show that the incorporation
of weather ensemble models can improve upon the uncer-
tainty measurements of standard artificial neural networks
(NNs) compared to those measured exclusively with histor-
ical load forecast errors. Ignoring the impact of weather
forecasts on PIs might prove to be especially problematic in
the future: due to CC related changes in the weather, future
weather variables might be far from the variables used in
training these models which could result in them becoming
unreliable (Hong & Fan, 2016).

3. Methodology
In this section, we describe our work on the two case studies
we conducted. We choose the electric grids of the Nether-
lands and the province of Alberta, Canada as application
examples. Both grids are wholesale markets, operating in a
deregulated fashion on a zonal level (AESO, 2021; TenneT,
2021). Moreover, the dimensions of electricity demand are
comparable between both grids. For the investigated period
of 2016-2019, the average hourly loads in Alberta and the
Netherlands where approximately 9,500 MW and 13,000
MW, respectively.

The predictive tasks to be learned by the ML models are 1h
and 24h demand forecasts. 24h forecast refers to predicting
a single demand value for t + 24, where t is the last time
step of the queried input sequence. Initial experiments with
24h sequence and 24h auto-regressive predictions result in
a significant performance decrease for point forecasts and
probabilistic forecasts. We therefore focus on single value
predictions for the 1h and 24h forecast horizons. As men-
tioned in section 1.1, those time intervals are relevant in
practice for the scheduling of operating, intraday or daily
reserves. For both grids and forecast lengths, we compare
how including weather data affects predictions of probabilis-
tic models. All electricity and weather data used for these
experiments is freely available online.
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3.1. Datasets

3.1.1. ELECTRICITY DATA

For Alberta, we obtain historic electricity demand data from
Alberta Electric System Operator (AESO)1. For the Nether-
lands, we extract the desired data from Open Power System
Data2, a package of several time-series datasets for power
system modeling. The downloaded datasets for both grids
consist of averaged hourly demand values (in MW) for the
years 2016 to 2019.

3.1.2. WEATHER DATA

For Alberta, historic weather data was obtained from Alberta
Climate Information Service (ACIS)3. For the Netherlands,
data was obtained via the Royal Netherlands Meteorolog-
ical Institute (KNMI)4. The datasets were pre-processed
to to achieve parity, ending up with datasets consisting of
temperature in deg. Celsius, relative humidity in %, precip-
itation in mm, wind speed in km/h and wind direction in
degrees, covering 2016 through 2019. Given Alberta faces
slightly more variance in weather across population dense
areas in comparison to the Netherlands, these variables were
aggregated across multiple weather stations, weighted by
population density.

We were unable to obtain high quality, historic weather fore-
cast data and had to compromise by using historic weather
data that had been shifted in its place.

After combining demand and weather variables, we expand
the date time information conveyed with every instance of
the dataset into the following time-related features: hour,
day of week, day of month, and month.

3.2. Data Preprocessing

We utilize the first 2.5 years (01.01.2016 – 30.06.2018)
of the dataset as training set. The following six month
(01.07.2018 – 31.12.2018) serve as validation set to iden-
tify the best configurations of preprocessing techniques and
model-specific hyperparameters. We report the final perfor-
mance of the three models on every task using the entire
last year (2019) as test set. To account for the notion of
similarities in time-related features, we experiment with
sine-cosine encoding. For example, 5pm and 6pm have the
same distance as 23pm and 0am but learning these relations
from ordinarily encoded features can impose a challenge for
ML models. Analyzing the demand time-series via autocor-
relation and discrete Fourier transform shows that the most
significant embedded frequencies have wave lengths of 12h,

1http://ets.aeso.ca
2https://data.open-power-system-data.org
3https://acis.alberta.ca
4https://www.knmi.nl

Figure 1. Example for a feature shift by 2 hours.

24h, and 168h. We encode these frequencies, representing
half day, day, and week, via a sine and cosine function for
each (London, 2016).

We further test two normalization techniques for demand
and weather variables. These are standardization to zero
mean and unit variance, and min-max scaling to a range
of (0, 1). To allow our models to incorporate future time
and weather information into demand forecasts, we experi-
ment with shifting these features backwards in time, relative
to the demand values. This technique is illustrated in fig-
ure 1. While it is not problematic to shift time variables,
it treats historic weather data as “perfect forecasts”. As
explained above, we chose this approach due to suitable
weather forecasts matching the time horizon of intended
demand forecasts being unavailable.

The last step of the preprocessing pipeline is sample cre-
ation with a sliding window. We treat the length of input
sequences as a hyperparameter and experiment with lengths
between 1h and 120h. For each sample, the output consists
of a single value, depending on the task reflecting either the
true demand of the next hour or in 24 hours.

3.3. Algorithms

We deploy three basic probabilistic machine learning algo-
rithms for our experiments: QRF, QGB, and a Bayesian
LSTM, a type of RNN. QRF and QGB are implemented
with the ML library scikit-learn and based on the work of
Dataman (2020). The Bayesian LSTM was built using Py-
Torch. Following our literature review, discussed in section
2, we chose these algorithms due to their popularity for
probabilistic predictions, performance in many areas, and
straightforward implementation.

3.3.1. QUANTILE RANDOM FOREST

QRFs are a probabilistic interpretation of the widely used
random forest algorithm. Random forests train multiple
decision trees on bootstrapped versions of the dataset and
perform a random feature selection to split each node. For
regression tasks, the algorithm returns the average over the
numerical outputs of all trees (Breiman, 2001).
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Meinshausen & Ridgeway (2006) showed that random
forests do not only provide information about the condi-
tional mean of the target variable, but also about its full
conditional distribution. Instead of computing the average
over every leaf of every tree, the QRF computes an estimate
of the distribution function. According to the authors, QRFs
provide an accurate way of estimating conditional quantiles
for high-dimensional predictor variables.

3.3.2. QUANTILE GRADIENT BOOSTING

Similar to random forest, gradient boosting is an ensem-
ble approach, typically based on decision trees. A gradient
boosting regressor is an additive model that learns by fitting
trees on pseudo-residuals, i.e. the predictive errors made
by previous trees (Friedman, 2001; 2002). By using asym-
metric loss functions, this recursive process can be used for
quantile regression. Then, instead of predicting mean or me-
dian, QGB predicts the α quantile for a selected α (Kriegler
& Berk, 2007). Consequently, other than for QRF, k models
must be trained to obtain predictions for k quantiles.

3.3.3. BAYESIAN LSTM

LSTM models are popular for time series forecasting due
to their ability to learn temporal dynamics of data, model
complex and non-linear relations. Similar to RNNs they can
internally maintain a memory of the input but also do not
have the vanishing gradient problem of RNNs (Yang et al.,
2020). Bayesian LSTM is an LSTM model that applies
Bernoulli dropout of rate p at each layer, which is equiva-
lent to placing a prior distribution over the parameters of the
LSTM (Charnock et al., 2020; Zhu & Laptev, 2017). The
network is then ran multiple times and the outputs are in-
terpreted as the distribution of targets that the model is able
to obtain. (Charnock et al., 2020). An advantage of these
models over other methods, such as variational inference is
that they are very easy to implement as they don’t require
changes to the architecture of the point forecasting models
and hence can be integrated into existing models very easily
(Zhu & Laptev, 2017).

3.3.4. TRAINING AND EVALUATION

We begin model training by experimenting with different
preprocessing techniques and model-specific hyperparam-
eters on deterministic versions of the algorithms. Other
than probabilistic outputs, the predictions of deterministic
models can plausibly be evaluated using single metrics. We
choose the root-mean-squared error (RMSE) on the valida-
tion set for these experiments. We then switch to probabilis-
tic models and further experiment with hyperparameters
based on the best configurations found before. For QRF and
QGB, the number of trees in the ensemble was found to be
most influential, whereas the number of hidden layers, units

per layer, and dropout rate p affected the Bayesian LSTM
the most. More specifically, the Bayesian LSTM model is
constructed using a 2-layer LSTM network, followed by a
fully-connected layer for the final output. We also apply
dropout after each hidden layer. During training, we use a
dropout rate of 0.5 and for the probabilistic predictions, this
rate is determined by plotting the reliability of the PI for
various dropout values. More precisely, we plot the cover-
age as a function of the PI for different dropout values and
choose the value which neither underestimates nor overesti-
mates the uncertainty. An example of this plot for the 24h
predictions on Alberta’s grid is shown in figure 2.

Figure 2. Reliability plots for various dropout values for the LSTM
model.

After tuning, we measure the performance for three predic-
tion intervals on the test set. For 95% (quantiles 0.025 –
0.975), 98% (0.01 – 0.99) and 99.8% (0.001 – 0.999) we
report coverage, i.e. rate of true values laying within the pre-
dicted prediction interval in per cent, and average interval
width in MW. Furthermore, we record the mean-absolute-
percentage error (MAPE) of the deterministic versions to
facilitate a comparison between both case studies.

4. Results
This section introduces the results obtained for the case
studies on the grids of Alberta and the Netherlands. We first
present the results for 1h forecasts, followed by those for
24h forecasts. For the sake of simplicity, we solely report
scores for 98% prediction intervals.
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4.1. 1 Hour Forecasts

Table 1 and 2 show 1h forecasting results for Alberta and the
Netherlands, respectively. For Alberta, QRF outperforms
QGB and LSTM on both probabilistic metrics. Only the
LSTM clearly profits from additional weather data with and
increased coverage and on average smaller prediction inter-
vals. For QRF and QGB, weather data increases coverage at
the cost of growing interval widths. A similar behavior can
be observed for the Netherlands. Here, with values below
90%, the coverage of the LSTM is significantly worse com-
pared to the tree-based models. The QGB on the other hand,
achieves highest coverage with weather data but nearly dou-
bles the size of its prediction interval compared to QRF. The
MAPE obtained for the deterministic versions indicates that
predictions on Netherlands’ grid are more challenging for
all models.

Table 1. 1h forecasting results on the test set for Alberta

Model Weather MAPE (%)
98% PI

coverage rate (%)
98% PI

avg. width (MW)

QRF × 0.5 98.75 346.5√
0.5 99.40 400.1

QGB × 0.4 97.91 642.6√
0.5 98.05 777.0

LSTM × 0.6 92.73 474.6√
0.7 96.08 462.5

Table 2. 1h forecasting results on the test set for Netherlands

Model Weather MAPE (%)
98% PI

coverage rate (%)
98% PI

avg. width (MW)

QRF × 1.2 95.81 991.5√
1.3 96.69 1071.33

QGB × 0.8 92.93 1235.0√
0.9 97.19 2073.7

LSTM × 1.4 86.20 1142.8√
1.5 89.40 1134.4

4.2. 24 Hour Forecasts

Table 3 and 4 present the results of 24h forecasts for Alberta
and the Netherlands, respectively. Several trends from 1h
forecasts are observable for 24h forecasts as well. Again,
the LSTM covers the least true values in its 98% prediction
interval, and again, the QGB produces the widest intervals.
For both grids, weather data helps QRF and LSTM to in-
crease coverage measurably in combination with a marginal
increase of the interval width. The QGB behaves inconsis-
tently when comparing the grids. Weather data decreases
both probabilistic measures for Alberta, whereas the cover-
age profits in the case of Netherlands.

Table 3. 24h forecasting results on the test set for Alberta

Model Weather MAPE (%)
98% PI

coverage rate (%)
98% PI

avg. width (MW)

QRF × 1.4 95.20 726.6√
1.3 98.30 814.2

QGB × 1.4 97.27 947.2√
1.1 96.48 1130.4

LSTM × 1.7 87.99 820.5√
1.3 90.46 849.1

Table 4. 24h forecasting results on the test set for Netherlands

Model Weather MAPE (%)
98% PI

coverage rate (%)
98% PI

avg. width (MW)

QRF × 2.9 94.70 2110.0√
2.6 96.12 2207.1

QGB × 3.1 94.75 2476.7√
2.6 97.50 4050.4

LSTM × 3.2 86.78 2214.4√
3.2 90.25 2417.5

5. Discussion
Based on the results shown in tables 1, 2, 3, 4 we can draw
some general conclusions regarding the impact of weather
data on both point and probabilistic load forecasts. For point
forecasting of demand, we note that the incorporation of
weather forecast data is more beneficial for 24h forecasting
compared to 1h forecasting. This is evident from the MAPE
of the 24h predictions, where including the weather data
results in a lower MAPE in all models (excluding LSTM
on NL). We speculate that the reason the 1h predictions do
not benefit from the incorporation of weather data is that
the next-hour weather is more predictable than the next-day
weather, implicitly including this information in the current
demand. The data for both the NL and AB grids also sug-
gest that the incorporation of weather forecasts resulted in
an increase in the coverage rate of the PI for both forecast
horizons. However, we also note that for most of the models,
this increasing PI coverage comes with the cost of an in-
creasing width of the confidence interval. This can be seen
in figure 5, where we show an example of the PIs for the 24h
forecast both with and without the weather forecast data.
Further investigations are required to see whether improving
the point predictions of these models might lead to a better
coverage of the actual load values, without compromising
the width. Additionally, even though these results are using
historical data as forecasts, we believe that they strongly
suggest that weather data impacts the uncertainty of predic-
tions in PLF. It is important to investigate this effect when
actual weather forecasts are used in the models.

Apart from studying the effect of weather data as a whole
on predictions, a feature importance analysis can provide
insight into the relevance of each variable has on the predic-
tions. We use Gini importance for the random forest models,
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Figure 3. Feature importance with random forest: 24h forecasts
for Alberta

measuring the mean impurity decrease of the split criterion
(MSE in our case), to compare predictions with and without
weather data. Figure 3 and 4 display the corresponding
results for 24h predictions for Alberta and Netherlands, re-
spectively. Interestingly, both grids show distinct results.
For Alberta, the demand itself is by far the most impor-
tant feature, followed the sine and cosine waves encoding
weekly information. Adding weather data only marginally
changes this behavior, with a slight importance increase for
air temperature. For predictions on the Dutch grid, figure 4
indicates a higher relevance for daily and weekly features.
When added, all five weather variables show higher impor-
tance compared to Alberta.

The reasoning behind for this observation could stem from
many factors, ranging from data quality to the limitations of
the deployed feature importance technique. One hypothesis
is that there exists differences in the behavior of consumers
between the two grids. In Alberta, energy-intense industry is
a major consumer, accounting for 75% of the province’s to-
tal energy demand. In the Netherlands, the industrial sector
consumes only 25% of the total energy demand (Govern-
ment of Canada, 2021; IEA, 2020). While these numbers
do not directly reflect the electricity demand, it is likely that
Alberta’s industry requires a higher share of electricity as
well. Heavy consumers in industry potentially show less de-
pendence on daytime, weekday, or weather than residential
ones that are more important in the Netherlands.

6. Pathways to Impact
Electric grids are complex networks involving many dif-
ferent parties in order to ensure they continue functioning
reliably. Each party has its own set of priorities and pos-
sesses unique means of reducing the carbon intensity of the

Figure 4. Feature importance with random forest: 24h forecasts
for Netherlands

grid. Our work can be leveraged by many of these parties,
leading to multiple avenues of increased grid efficiency.

6.1. Grid Authorities

Grid authorities are organizations tasked with the manage-
ment and operation of electric grids. While the exact re-
sponsibilities may vary across different grids and countries,
they are in control of the grid and ensuring its reliability.
An essential responsibility of grid authorities is the coordi-
nation of operating reserves. As already discussed in the
introduction, these reserves can be extremely pollutant and
inefficient.

By incorporating probabilistic forecasts, operating reserves
can be maintained up to the peak of a chosen α-level pre-
diction interval (PI). In doing so, we can mitigate the use of
superfluous operating reserves and directly reduce unneces-
sary GHG emissions.

6.2. Power Producers

There are many different methods power producers can
use for generating electricity. Carbon intensive methods
make up the majority of generation due to the reliability
and accessibility of fossil fuels (EESI, 2018). Renewable
generation is intermittent, heavily dependant on weather and
often geographically limited in distribution. If any of these
barriers can be addressed, we can increase the incorporation
of renewables into the grid, limiting carbon intensive power
generation. As renewable generation increases and becomes
more profitable, more players can become involved in gen-
eration and R&D (research and development), leading to a
positive feedback loop.

By better understanding how weather data is affecting prob-
abilistic forecasts of demand, we can plan in advance by

7



Figure 5. Prediction example for the Netherlands using random forest on the first 500h of the test set

observing whether or not forecast renewable generation can
cover up to the peak of our PI. If so, we reduce the need
for operating reserves. Since renewables are heavily de-
pendent on weather, this work could be extended to further
understand how weather data affects probabilistic forecasts
of supply or price, which would give insight into how re-
newables are currently incorporated into the grid. With
increased understanding of how renewables incorporate into
the grid and affect the market, we can continue to scale
renewable generation methods with confidence.

6.3. Storage Operators

Energy storage as a service (ESaaS) refers to organizations
deploying energy storage and management systems at a cost.
These storage solutions are vital to grids running reliably
and optimally. They can incentivize demand response by
allowing companies to buy and store electricity at periods
of low demand. Differences in supply and demand could
be accounted for using stored energy, reducing the need for
operating reserves. Given the intermittency of many forms
of renewable energy generation, this technology could be
used to increase the incorporation renewables into the grid.

By extending this work to price forecasting, these ESaaS
organizations can increase their profits through better man-
aged buying and selling. If being a storage provider becomes
more profitable, more organizations will be encouraged to
engage in this, increasing storage capacity and potentially
R&D for efficient energy storage. This can lead to increas-
ing the presence of renewables in the grid (ESA, 2019),

reducing the use of operating reserves as well as improving
demand response at scale.

6.4. Consumers

As consumers, to alleviate stress on the grid, we can engage
in demand response. This means we decrease or modulate
our demand, to reduce dramatic peaks in demand. This
reduce the need for operating reserves, making it a cost-
effective strategy for reducing unnecessary GHG emissions.

While point estimates are able to give indications of when
peaks are to be expected, their ability to convey forecasts
about peak load is limited. Given probabilistic forecasts that
incorporate weather data, we are not only able to capture
these same trends, but the PIs can indicate potential peaks
in demand where point estimates fail to do so. As such,
using these models, can help consumers better engage in
demand response to reduce emissions and help avoid system
emergencies.

6.5. Market Participants

Many grids, mainly those in the US, that operate with a
wholesale electricity market employ a tactic referred to as
”virtual bidding”. This allows financial entities to make bids
to buy or sell in the day-ahead market, with a commitment
to close their position with a sell or buy respectively in the
real-time market. Given these virtual bids compete with
physical bids, they contribute to price determination, help
reduce in inefficiencies by converging the day-ahead and
real-time markets (Kim, 2018).
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If this work is extended to price forecasting, these financial
entities can leverage these probabilistic forecasts to better
inform their bidding strategies. With improved forecasts,
virtual bidding can become more profitable, encouraging
more entities to become engaged in this market. This leads
to increasing the price convergence of the day-ahead and
real-time markets, further reducing inefficiencies in the grid.

7. General Considerations
7.1. Perfect Forecasts

Though efforts were made to obtain forecast data through
weather modelling organizations such as European Centre
for Medium-Range Weather Forecasts (ECMWF) and Na-
tional Oceanic and Atmospheric Administration (NOAA),
as well as via private vendors, we were unable to obtain high
quality historic weather forecasts under the time constraints
associated with the project. As a result, we compromised by
shifting historic weather data, assuming perfect short term
forecasts.

The consequence of this cannot be measured precisely, how-
ever this implies our results can be assumed to be marginally
optimistic. Nevertheless, it is to be noted that the intent of
this project is not to improve upon state of the art point
forecasts, nor to develop optimal probabilistic models for
this domain. The objective of the research conducted is to
understand how weather can impact PLFs, as a step towards
probabilistic methods becoming standard in this domain. In
that vein, using these ”perfect forecasts” are still able to give
valuable insight into how a better understanding of weather
patterns can lead to improved probabilistic forecasts.

7.2. Evaluation Metrics

A natural question that arises when dealing with probabilis-
tic forecasts is how to best evaluate performance. We can
compare the percentage of actual values that fall within the
range of our given PI. We can also measure the width of
such PIs. Both these metrics give some insight into the
quality of a probabilistic estimate, however, neither do so
definitively. For instance, a 98% PI that contains 99% of the
actual values sounds great in theory, however if the interval
width is massive, we are given very little information of
value. Similarly, a narrow interval is ideal, unless it contains
only a small percentage of the true values.

There also exists other metrics, such as reliability, sharpness
and resolution, which all capture different information about
the uncertainty of forecasts. They, however, also require to
be studied in parallel to provide more complete analyses
(Hong & Fan, 2016).

As a result, even though we can gauge which models gener-
ally perform better than others for a given α-level PI using

different metrics, we are unable to form any kind of ob-
jective or definitive ranking of the models developed and
tested.

7.3. Optimal α-level

Once high-performing probabilistic forecasts are fully de-
veloped, a new set of questions surface. Maybe the most
prominent of which is how confident should models be in
this domain? While standard (1 − α)% PIs (90%, 95%
and 99%) may be adequate in most work, in the context of
electricity grids, this equates to the miss-management of
generation and supply anywhere from three to thirty-seven
days of the year. As previously mentioned, these forecast
errors can result in power outages and wasted resources.

An important consideration is that as we increase the confi-
dence of a PI, the width grows and can explode as we begin
to include the tails of the distribution. Bearing this in mind,
information may be lost at a certain level of confidence
rather than gained and must be considered when consider-
ing what level of confidence is optimal in this domain.

8. Future Work
8.1. Sources of Uncertainty

In the work of Zhu & Laptev (2017), researchers were able
to break down the uncertainty associated with Bayesian
Neural Networks (BNNs) into its components, as well as de-
velop estimators to capture the uncertainty originating from
each source. Future work on this topic could try to follow
their suit in identifying all theoretical sources of uncertainty
in a given model and developing accurate estimators to
capture them. This would lead to more accurate and less
optimistic forecasts, helping to eliminate forecasting errors.

8.2. State of the Art Methods

Many of the methods of generating probabilistic forecasts
involve using many point estimates that have been predicted
within the pipeline to build posteriors. Developing a frame-
work that can be added to current state of the art point
forecasting techniques and models could not only help im-
prove these probabilistic forecasts, but would make them
more accessible as they could easily be incorporated into
existing point forecast models. This could help probabilistic
methods become standard in the domain of electricity grids.

8.3. Variations of Weather Data

Weather data can come in many forms including historical
weather data, historical weather forecasts and sophisticated
weather models such as ensemble models and climate reanal-
ysis models. In particular, climate reanalysis has been shown
to find errors across temporal and spatial scales (Slivinski,
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2018), while ensemble models can incorporate uncertainty
estimates into their forecasts, providing a clearer picture
regarding future weather scenarios (Buizza & Richardson,
2017; Taylor & Buizza, 2002). Applying more sophisticated
weather models could better capture the uncertainty and
non-linear relationships that may exist, helping to improve
probabilistic forecasts.

8.4. Price Forecasting

A natural next step is to extend this work to more com-
plex challenge of price forecasting, as it further increases
the potential impact of this work. Many of the pathways
to impact examined consider the application of increased
understanding of weather’s impact on probabilistic price
forecasts. Given the impact weather has on the generation
of renewables, affecting not only demand but supply as well,
we believe the impact of weather to be equally, if not more
important in this context.

9. Conclusion
In this paper, we investigated the impact of weather forecasts
on probabilistic demand forecasting. We proposed three
methods for performing PLF and obtained some preliminary
results on two different grids over two time horizons. We
believe that these results suggest further investigation into
the effect of weather data is an important step for PLF in this
domain and can have a substantial contributions to climate
change mitigation strategies.
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